Chronic Lyme and Neurological Disorders: Mechanism & Treatments

Louis Teulières (louis.teulieres@phelix.org.uk) : MD, Degrees in immunology, epidemiology, infectious diseases and bacteriology. Former Director of Pasteur Institute clinical trials. Co-Trustee of Phelix bacteriophages research charity. ILADS)

Neurological disabilities Center, Fondation A De Gaulle, Versailles, 78000, France

PHELIX RESEARCH AND DEVELOPMENT

Neuro-Degeneration and Chronic Infections

Infections and co-infections

Conditions Identified by Symptoms	Chronic Infections Commonly Observed
Amyotrophic Lateral Scleros <i>i</i> s (ALS)	Mycoplasma fermentans (and other species), <i>Borrelia b., Chlamydia pneumoniae</i> , HHV6 virus.
Multiple Sclerosis (MS)	Chlamydia pneumonia, Borrelia b., HSV1 and other Herpes Viruses
Alzheimer's Disease (AD)	<i>Chlamydia pneumonia</i> , Mycoplasma species, <i>Borrelia</i> b, HVV6 and other Herpes Viruses
Parkinson's Disease (PD)	Helicobacter pylori, coronavirus, Mycoplasma Species.
Autism Spectrum Disorder (ASD)	Mycoplasma fermentans (and other species), Borrelia b, Borrelia g., Borrelia a., Rickettsia, Sutterella, Chlamydia pneumoniae, HHV6 virus.
Chronic Fatigue Syndrome (CFS)	Mycoplasma pneumonia (and other species), Borrelia b., Borrelia g., Borrelia a, Chlamydia pneumonia

Lyme Borrelia strains

- Borrelia is an obligate parasite with a minimal genome with a main chromosome (911 kb for the type strain B31), and 20 or more smaller plasmids ranging from 5-50 kb
- *Borrelia* rely on the host to acquire building blocks
- Survival forms : Cyst, Blebs, Biofilms & Cell Wall deficient
- In the human body, glucose is the primary energy source for *Borrelia*
- Borrelia in the blood is very low < 100/ml
- Borrelia can be outside human cells or inside human cells, antibody-binding is necessary to locate
- Intracellular *Borrelia* can survive inside human cells

Figure 3: INTRACELLULAR SPIROCHETES IN NEURONS OF GRAY MATTER

Neuro-Inflammation

Representation of the different processes involved in mast cell activation by infectious and immunological triggers, leading to a disruption of the blood-brain-barrier, to the autoimmunity and to a chronic inflammation contributing to pathogenesis.

Neuro Borreliosis : Inflammation & Microglia activation

Release of BDNF & pro-inflammatory cytokines by the activation of Microglia : Effect on Co-KCC2 (--) & GABA (--)

0	Gly	cine	or	GA	BA
---	-----	------	----	----	----

Microglia :	CNS immune defence
BDNF :	Brain derived Neutrofic Factor
GABA :	Gamma Amino-Butyric Acid
KCC2 :	co-transporter type 2 Cl-
NKCC1 :	co-transporter typ1 Na+, K+, 2 C
P2X4 :	Receptor

Microglia is activated via the P2X4 receptor and via the ATP. This releases BDNF, which then inhibits the exporter potassium/chloride KCC2. There is therefore a loss of the inhibition exerted by GABA and glycine. Chlorine (2CI-) remains imprisoned, resulting in an increase in K+ and Na++ concentration, which in turn leads to a depolarization of the postsynaptic neuron, and hypersensitivity to pain, and cerebral stirring.

This explains aches and/or burning sensations, or/and cramps and tingling.

The ratio between pyruvate & lactate plays an important role in the glutamine GABA glutamate cycle.

A too High CO2 concentration seems to favour glutamate (astrocytes) at the expense of GABA neuron circuit. The GLYCINE can correct this dysfunctional pathway.

Pyruvates and Ammonia

Pyruvate / Lactate ratio imbalance (--)

Excess of Ammonia and Glutamate (++)

- Krebs cycle dysregulation
- High Lactate levels
- High intra-cell increased ammonia levels
- Increase ammonia enhances
 Glutamine formation
- This reduces Glutamic acid pool of brain cell
- Result in decreased formation of the inhibitory neurotransmitter GABA
- Low citric acid cycle (Krebs cycle)
- Liver & Kidney functions ?
- Toxicity ?

A high intracellular ammonia concentration (with Pyruvates suffocation & hypo functionnal liver) impairs the CNS functions but also the Methylation cycles

Ammonia, Methylation cycles, Neurotransmitters & Oxidative Stress

A Chronic inflammation the Kynurenine pathway in the Methylation cycles leading to a poor conversion of Tryptophan & Tyrosine : Monoamines Imbalance, Folate cycle impaired & Glutathione depletion

Intracellular Borrelia, CD38 & Ca++ levels, Oxytocin and Mitochondria

Complexcity of the condition: overview

Pulsed Antibiotics Therapy

- Objective : to kill or reduce active forms of bacteria with pulsed courses of antibiotics, targeting intracellular pathogens (macrolides, tetracyclines, cephalosporins).
- Pulsed courses are over 15 to 20 days maximum.
- A break of at least 21 days is crucial between courses. One course of 20 days is almost never sufficient, even if patients improve. If the treatment is discontinued, a relapse is certain.
- The symptoms reappear one after the other, during the 2nd week of the therapeutic break. This relapse signs the awakening of dormant forms. Is it a relapse or an inflammatory immune response? BOTH

• Why Pulsed ABX ?

- Better tolerance: moderate dosage enables the leveraging of therapeutic windows for the associated treatments and drainage
- Reduce ABX resistance
- Reduce the proportion of « cystic » forms

Non-Steroidal Anti-Inflammatory Drugs and supplements. Long-term effects on the Neuro-degeneration.

How NSAIDs Blocks the inflammation process?

Arachidonic acid is metabolized to produce inflammatory mediators.Many current anti-inflammatoryand pain medicines are inhibit some portion of the arachidonic acid pathways.

Nb: Prostaglandins produce Nitric Oxide (NO) which inhibits the production of Oxytocin in the Posterior Pituitary

The ultimate goal is to reduce inflammation, as well as fight infections and/or co-morbidities

Non-steroidal inhibitors

-5-Lipoxygenase Boswelia & Curcuma GSE (Grapfruit Seed Extract)

-Cytochrome c Oxidase subunit II (Cox II) Flavonoids(Arginine,Luteolin,Quercetin, Rutine, Bromelain) GSE (Grapefruit Seed Extract)

Cytochrome c Oxidase subunit I (Cox I) Aspirin Ibuprofen

-Interleukines-1β Rilonacepte nettle extract Uva Ursi

-Ammonia Salvia azzura Lezpêdeza Apple pectin L-Citrulin

-Gaba et precursors Huperzin A L-theanin Lysine Methylation

Support and Regulate the neuro-endocrine system

Side effects, quality of life and treatment efficiency

- Support intestines (leaky gut) in case of allergic immune response
- Support liver for effective detoxification

- During ABX courses
- Probiotics, aloe clay
- Between ABX courses
- Protection hépatique
- (Phytotherapy:Desmodium
 Chrysantellum Curcuma...)

Phelix Trustees & Members

Francois-Xavier Louvet Co-Trustee & Founder Legal representative fx.louvet@phelix.org.uk

Martha Clokie Founding Member & Researcher Professor of Microbiology Leicester University

Matha Clokie

Louis Teulieres Co-Trustee & Founder Medical Doctor & Naturopath Immunologist Consultant louis.teulieres@phelix.org.uk

Louis Teulieres

Christian Perronne Founding Member Professor of Medecine Infectious and Tropical Diseases Hopital Raymond Poincare Paris

Christian Perronne

Jinyu Shan Member & Researcher Doctor in Microbiology Leicester University

linvu Shan

Pierre Gressens Member **Professor of Medecine** Child Neurologist St Thomas Hospital London **Robert Debre Hospital Paris**

Gressens