Multiple infections by Borrelia burgdorferi and other tick-borne pathogens

Complexity of symptoms, diagnostic tests and consequences for therapy

Conference 8th March 2015
Holiday Inn Regent's Park, London, England

Armin Schwarzbach MD PhD
CEO ArminLabs
Specialist for laboratory medicine

International expert for the Chief Medical Officer’s Clinical Advisory Committee on Lyme Disease in Australia (CACLD) of the Australian Government, Department of Health and Ageing, Canberra, Australia

International expert for the Irish Health Committee on Lyme Borreliosis, Dublin, Ireland

ArminLabs
Laboratory for tick-borne diseases
Tel. +49 (821) 2182879
www.arminlabs.com
PART 1: LABORATORY TESTS
It remains difficult to culture Lyme Disease except at the margins of an EM rash

Cultures are difficult to obtain due to:
- the small numbers
- slow growth of the organism
- need for special culture media
- can take as long as 10.5 months

Cultures have rarely been positive in knee fluid and CSF.

There are no tests to determine the susceptibility pattern for different antibiotics for an individual LD patient.
PCR has poor sensitivity

Polymerase chain reaction (PCR) technique amplifies small traces of bacterial DNA

Sensitivity is 5 - 25% in actual practice.

The low sensitivity in blood
- low level of spirochetes in blood
- lack of spirochetemia
- transient spirochetemia
- presence of PCR inhibitors in host blood

Potential for false positives

Copyright of this slide by Daniel J. Cameron MD MPH, USA
Principles of immune defense

Invader: Borrelia

MACROPHAGE

Macrophage presents natural killer cell
Borrelia: CD57+ NK cells

TH₀

TH₂

TH₁

Macrophage destroys the antigen-antibody complex (Borrelia)

Mast cell

HISTAMINE

Borrelia destroyed

Borrelia destroyed
Differentiation of TH1 and TH2 cells by cytokine profiles

Macrophage presents Borrelia

MACROPHAGE

IL-2, IFN-γ, TNF-β

TH₀

PLASMA

IL-10, IL-4, IL-5

Cytokine profile

TH₁

TH₂
Influence of TH1 cells

- Tuberculosis
- ME/CFS
- AIDS/HIV
- Candida infections
- Virus: Hepatitis C
- Leaky gut syndrome
- Multiple allergies
- Sepsis
- Borrelia
- Gulf War I Syndrome
- Bacteria
Development of diseases from TH1 cell overreaction

- Rheumatoid Arthritis
- Multiple Sclerosis
- Hashimoto's Thyroiditis
The current diagnostic strategy of starting with an ELISA test is wrong

Serological tests are performed using an antiquated two-tier concept (according to CDC recommendations):

First step: Sera are screened using an IgG/IgM class-specific ELISA (enzyme-linked immunosorbent assay)

Second step: If sera are positive or borderline in the ELISA, this is confirmed using an IgG/IgM class-specific immunoblotting technique

PROBLEM: The Immunoblot is more sensitive than the ELISA, i.e. the more specific test is more sensitive too:

High risk: Cases of positive Immunoblot but negative ELISA!
Laboratory example from practice: Negative enzyme immunoassay (EIA), but positive Immunoblot

Laboratory results

Patient:
Date of birth: 08/09/1947
Date of testing: 07/08/2009

<table>
<thead>
<tr>
<th>Antibodies (Humoral immune system)</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi-IgG-EIA</td>
<td>2.8 RU/ml</td>
<td><16</td>
</tr>
<tr>
<td>Borrelia burgdorferi-IgM-EIA</td>
<td>7.6 RU/ml</td>
<td><16</td>
</tr>
<tr>
<td>Borrelia burgdorferi-IgG-Blot</td>
<td>positive</td>
<td></td>
</tr>
<tr>
<td>Borrelia burgdorferi-IgM-Blot</td>
<td>Bands: OspC +, p41 +, VlsE-Bg +, VlsE-Ba + positive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bands: OspC-Bg +, OspC-Bb +, OspC-Ba +, p41 (+)</td>
<td></td>
</tr>
</tbody>
</table>

Interpretation:

The specific Borrelia burgdorferi-IgG/IgM-antibodies by immunoblot-technique (false-negative EIA !) are an indication for a humoral immune-response against Borrelia burgdorferi in blood.

Armin Schwarzbach M.D. Ph.D.
Doctor for laboratory medicine
Specificity and sensitivity of Borrelia antibodies by ELISA and Immunoblot

<table>
<thead>
<tr>
<th>Year</th>
<th>Author/Literature</th>
<th>Specificity/Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Schmitz et al. Eur J Clin Microbiol Infect Dis 12,419.424</td>
<td>100% / 66%</td>
</tr>
<tr>
<td>1995</td>
<td>Engstrom SM, Shoop E et al. J Clin Microbiol 33, 419–27.</td>
<td>96% / 55%</td>
</tr>
<tr>
<td>1996</td>
<td>Ledue TB, Collins MF, Craig WY J Clin Microbiol 34, 2343–50.</td>
<td>100% / 44%</td>
</tr>
<tr>
<td>1999</td>
<td>Trevejo RT, Krause PJ et al. J Infect Dis 179, 931-8.</td>
<td>100% / 29%</td>
</tr>
<tr>
<td>2001</td>
<td>Nowakiwski et al. Clin Infect Dis 33, 2023-2027</td>
<td>99% / 66%</td>
</tr>
<tr>
<td>2009</td>
<td>Klemann W, Huismans BD. Umwelt-Medizin-Gesellschaft; 22(2) 132-138</td>
<td>- / 60%</td>
</tr>
<tr>
<td>2010</td>
<td>Schwarzbach A. (unpublished)</td>
<td>92% / 60% Blot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- /32-42%ELISA</td>
</tr>
</tbody>
</table>

- **Average**: ~99% / ~43%
Other recent studies: Insensitivity of ELISA and antibodies

- “In the case of ELISA, positive or borderline results were observed in only 24 patients (53.3%).” (Wojciechowska-Koszko et al., Feb. 2011)

- “32 patients had specific antiborrelia antibodies confirmed using Western Blot despite a negative ELISA...In patients with persisting difficulties it is necessary to use the Western Blot test...It is probably due to the very low production of specific antibodies caused also by immune deficiency status detected in all our patients.” (Durovska et al., 2010)

- “The number of IgM- and/or IgG-positive ELISA results ... ranged from 34 to 59%...Comparison of Immunoblots yielded large differences in inter-test agreement...Remarkably, some Immunoblots gave positive results in samples that had been tested negative by all eight ELISAs.” (Ang CW et al., Jan. 2011)
Summary: Insensitivity of ELISA vs. Immunoblot

Antibodies in Lyme disease patients the current IDSA/CDC Borrelia ELISA screening model:

Loss of sensitivity: 16 - 28 %

Every 4th - 6th chronic Lyme patient has a positive or borderline Immunoblot, but not a positive ELISA!

- Great number of patients will not be identified by the ELISA screening test, and Lyme Disease will consequently be excluded by their diagnosing MDs
- The more specific Immunoblot is the more sensitive test
- The Borrelia ELISA is senseless
- Only a Borrelia Immunoblot should be done for screening Borrelia antibodies
Borrelia antibodies by ELISA and Immunoblot: evidence-based literature on “false seronegativity”

Borrelia antibodies by ELISA and Immunoblot: evidence-based literature on “false seronegativity”

Borrelia antibodies by ELISA and Immunoblot: evidence-based literature on “false seronegativity”

Borrelia antibodies by ELISA and Immunoblot: evidence-based literature on “false seronegativity”

- Paul A. [Arthritis, headache, facial paralysis. Despite negative laboratory tests Borrelia can still be the cause]. MMW Fortschr. Med 2001 Feb 8;143(6):17.
- Ang CW, Notermans DW, Hommes M, Simoons-Smit AM, Herremans T. Large differences between test strategies for the detection of anti-Borrelia antibodies are revealed by comparing eight ELISAs and five immunoblots. Eur J Clin Microbiol Infect Dis. Published online: 27 Jan 2011
Evidence that an IgM Western blot response can last longer than 6 months in Lyme disease

“IgM levels rose during exacerbations and fell during remission” for 6 to 18 months after treatment of an EM rash. Steere, 1979

“56% of patients with early Lyme disease had detectable IgM responses to the spirochete 6 months later”

Massarotti 1992

“Serum IgM levels correlated directly with disease activity (p = 0.025)“

Craft, Yale J Biol Med 1984

“Persistence of specific IgM antibodies may also be associated with more severe disease.”

Craft, 1984

Copyright of this slide by Daniel J. Cameron MD MPH, USA
Case report: Chronic Lyme disease stage III with T-cellular immune response

43-year-old patient, suffering since May 2005 from
- Persistent paraesthesia of the left leg
- 80% blindness of the left eye
- Progressive myalgia
- Recurrent dizziness
- Substantial loss of power during his work (high threat of occupation disability)

Diagnosis by neurologists: MS!

Spinal fluid and laboratory tests were negative (No Borrelia antibody AI, no chronic IgG synthesis in form of oligoclonal bands in the spinal fluid)

Borrelia IgM/IgG-ELISA and Immunoblot several different times negative

Therapy: Corticosteroids increased her symptoms + bad side-effects of corticosteroids!
Case report: Initial findings of the Borrelia-LTT and CD57 count on 26th Oct. 2005 before antibiotic treatment

Klinische Angaben: Diagnose unbek.

Material: EDTA, CPD Blut, CPD Blut, Heparinblut, Vollblut

<table>
<thead>
<tr>
<th>Untersuchung</th>
<th>Ergebnis</th>
<th>Referenzbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukozyten</td>
<td>↓ 4.2 x10³/μl</td>
<td>4.4 - 11.3 IMP</td>
</tr>
<tr>
<td>Erythrozyten</td>
<td>4.11 x10⁶/μl</td>
<td>4.1 - 5.1 IMP</td>
</tr>
<tr>
<td>Hämoglobin</td>
<td>12.7 g/dl</td>
<td>12.3 - 15.3 PHO</td>
</tr>
<tr>
<td>Hämokrit</td>
<td>37.6 %</td>
<td>36 - 47 RECH</td>
</tr>
<tr>
<td>MCV</td>
<td>91.5 f1</td>
<td>80 - 99 RECH</td>
</tr>
<tr>
<td>HBE (MCH)</td>
<td>30.9 pg</td>
<td>26 - 34 RECH</td>
</tr>
<tr>
<td>MCH</td>
<td>33.8 g/dl</td>
<td>31 - 36 RECH</td>
</tr>
<tr>
<td>Thrombozyten</td>
<td>243 x10³/μl</td>
<td>140 - 400 IMP</td>
</tr>
</tbody>
</table>

Differentialblutbild

- Neutrophile: 46 % (45 - 75 IMP)
- Lymphozyten: 43 % (20 - 45 IMP)
- Monozyten: 9 % (2 - 13 IMP)
- Eosinophile: ↓ 1 % (2 - 4 IMP)
- Basophile: 1 % (0 - 1 IMP)

CD3-CD57+ Zellen

(CD3-,CD57+ absolut) 65 /μl (5 - 20 RECH)

Eine Verminderung der Anzahl CD57+/CD3- Zellen kann für eine chronische Borreliose sprechen.

Lymphozytentransformationstest

- Spontanaktivität: 870 cpm (< 1000 LTT)
- Oscp: ↑ 30.1 SI (< 2.0 LTT)
- P18-Antigen: ↑ 4.8 SI (< 2.0 LTT)
- P100-Antigen: ↑ 8.1 SI (< 2.0 LTT)

Resultate

- B. burgdorferi-IgG-Blot: negativ
- B. burgdorferi-IgM-Blot: negativ

This document is intellectual property of Armin Schwarzbach MD PhD. Reproduction only with permission. Please note the copyright.
Case report: Borrelia-LTT Jan 23rd 2006 after Ceftriaxone IV treatment (8 weeks after the end of therapy)

<table>
<thead>
<tr>
<th>Ospc</th>
<th>↑ 2.2</th>
<th>SI</th>
<th>< 2.0</th>
<th>LTT 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P18-Antigen</td>
<td><1</td>
<td>SI</td>
<td>< 2.0</td>
<td>LTT 1</td>
</tr>
<tr>
<td>P100-Antigen</td>
<td><1</td>
<td>SI</td>
<td>< 2.0</td>
<td>LTT 1</td>
</tr>
</tbody>
</table>

Significant decrease of the LTT (Lymphoocyte Transformation Test)

Lyme-Borreliose

- B. burgdorferi-IgG-EIA < 5 U/ml
- B. burgdorferi-IgM-EIA 0.8 Index

Kein serologischer Hinweis auf Infektion mit B. burgdorferi.

On Jan 23rd, 2006, patient is clinically symptom-free and capable of work!

Correct diagnosis: Chronic Neuroborreliosis with Multiple Sclerosis-like symptoms
The spinal tap has poor sensitivity in chronic neurological Lyme Disease

27 subjects with neurological Lyme Disease presenting to Tufts Univ. School of Medicine, Boston

1 out of 27 with antibodies to Lyme disease

1 out of 27 with an abnormal spinal tap (7 white cells)

Logigian, Steere, 1990, NEJM
Aims of the immune-competent cells

CD57+NK cells
- Lysis antigen-antibody complexes (Borrelia burgdorferi)

Elispot-LTT (T-cells):
- Borrelia burgdorferi
- Chlamydia pneumoniae
- Anaplasma/Ehrlichia and others

Antibodies (B-cells):
- Borrelia burgdorferi
- Chlamydia, Mycoplasma
- Anaplasma, Ehrlichia, Babesia...
B-cells (IgG/IgM antibodies): ELISA, Immunoblot
Antibodies by Immunoblot: EUROLINE-RN-AT
The new surface marker VlsE for B-cellular activity: highly specific, associated with “in vivo” activity

VlsE = Vmp-like sequence Expression site
Antibodies by Immunoblot: EUROLINE-RN-AT

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Prevalence*</th>
<th>Specificity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VlsE Ba</td>
<td>66%</td>
<td>99%</td>
</tr>
<tr>
<td>VlsE Bb</td>
<td>89%</td>
<td>99%</td>
</tr>
<tr>
<td>VlsE Bg</td>
<td>68%</td>
<td>99%</td>
</tr>
<tr>
<td>Lipid Ba</td>
<td>25%</td>
<td>95%</td>
</tr>
<tr>
<td>Lipid Bb</td>
<td>25%</td>
<td>95%</td>
</tr>
<tr>
<td>p83</td>
<td>54%</td>
<td>95%</td>
</tr>
<tr>
<td>p39</td>
<td>61%</td>
<td>99%</td>
</tr>
<tr>
<td>OspC</td>
<td>49%</td>
<td>96%</td>
</tr>
<tr>
<td>p58 (BB_A34)</td>
<td>21%</td>
<td>98%</td>
</tr>
<tr>
<td>p21 (BB_K53)</td>
<td>9%</td>
<td>99%</td>
</tr>
<tr>
<td>p20 (BB_Q03)</td>
<td>7%</td>
<td>100%</td>
</tr>
<tr>
<td>p19 (BB_N38)</td>
<td>9%</td>
<td>99%</td>
</tr>
<tr>
<td>p18 (BB_P38)</td>
<td>22%</td>
<td>99%</td>
</tr>
</tbody>
</table>

→ **High specificity:** 95-100%

→ **But: Low sensitivity:** 60%
Anti-Borrelia EUROLINE-RN-AT
Combination of specific Borrelia markers

Recombinant antigens (for example ArminLabs, Germany)
Antigens that are not expressed in bacterial cultures or expressed only in insufficient amounts, e.g. VlsE

Native antigens (for example Igenex, USA)
High sensitivity and specificity compared to recombinant antigens
1. Isolated natively, e.g. OspC
2. Cut from a Western blot membrane, e.g. BmpA

Specificity: 95-100 %

Sensitivity: ~ 60 %!
T-cells (T-lymphocytes): Elispot Lymphocyte Transformation Test (Elispot-LTT)
Dr. Leo Joosten, Department of Medicine, Radboud University, Netherlands:

Q: What solutions that are currently being pursued do you believe hold the most promise for diagnosing Lyme disease at a high confidence level? What tests currently available to the general public, other than the Western Blot test, do you believe provide a better degree of certainty?

A: “At the moment, there are cellular-based tests on the market. LTT and Elispot are a few of these tests. These tests give us information about the cellular immune response towards *Borrelia* antigens. It seems that these tests will used in the future, apart from serological tests.”
Elispot-LTT: The principle (I)

Elispot well coated with monoclonal, cytokine-specific antibodies (IFNγ, IL10 etc.)

Lymphocytes are isolated

Incubation with cells and antigens, specific cells release cytokines
Elispot-LTT: The principle (II)

Add biotinylated secondary antibody complex: pr.AB/Cytokine/sec.AB

Add Streptavidin-enzyme conjugate

Analysis

Add substrate to develop colour
Borrelia antigens in the Borrelia EliSpot LTT

- Borrelia burgdorferi full antigen: Borrelia burgdorferi B31-reference strain (Borrelia burgdorferi sensu stricto)

- Borrelia burgorferi peptide mix: OspA from Borrelia b. sensu stricto, Borrelia afzelii, Borrelia garinii + OspC native + DbpA recombinant

- Borrelia burgdorferi LFA-1 (Lymphocyte Function Antigen 1): Own body protein + Borrelia burgdorferi sensu stricto (shared epitope). Often associated with autoimmune diseases: collagenosis, Rheumatoid Arthritis, vasculitis (ANA, CCP antibodies, ANCA)

Explanation: Native = cultured antigens; Recombinant: genetic technology produced
ELISA / EliSpot in Lyme Stage I

- EliSpot
- ELISA (IgM/IgG)

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive Cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EliSpot</td>
<td>100%</td>
</tr>
<tr>
<td>ELISA</td>
<td>75%</td>
</tr>
<tr>
<td>ELISA</td>
<td>45%</td>
</tr>
</tbody>
</table>
EliSpot-LTT during antibiotics: "Staging" progress

Antibody titer

T-cells

Months after start of antibiotic therapy

3 6 9 12
EliSpot-LTT during antibiotics: “Staging” progress

Unsuccessful therapy

Successful therapy

Months after start of antibiotic therapy
EliSpot-LTT in chronic Lyme Disease

Grey columns: before antibiotic therapy

Black columns: after antibiotic therapy
Borrelia Elispot (LTT / T-Cell-Spot / IGRA: Interferon-Gamma-Release Assay /Lymphocyte Transformation Test)

1. Successful control of antibiotic therapy - **STAGING**:
 - About 2 months after the end of a therapy there should already be a significant reduction
 - Borrelia IgM/IgG titer reduction after 6 - 12 months!

2. Reflects the **current T-cellular activity** of Lyme disease:
 - Indicates active Borrelia infection if a positive Elispot LTT continues after the end of therapy
 - **T-Cell-Spot/IGRA has been approved by the FDA in May 2011 for M. tuberculosis:**
 - “… A positive result suggests that an infection is likely, a negative result suggests that an infection is unlikely....”
 - “…Results can be available within 24 hours...”
Borrelia Elispot (LTT / T-Cell-Spot / IGRA: Interferon-Gamma-Release Assay /Lymphocyte Transformation Test)

... The ELISPOT assay showed ... a specificity of 82% in Neuroborreliosis...

Nordberg et al.: Can ELISPOT be applied to a clinical setting as a diagnostic utility for Neuroborreliosis?, Cells 2012, I, 153-167

... Borrelia antibody positive asymptomatic children (n=20), children with previous clinical Lyme Borreliosis (n=24), and controls (n=20). Blood samples were analyzed for Borrelia-specific interferon-gamma...by ELISPOT...We found no significant differences in cytokine secretion between groups...

Skogman et al.: Adaptive and Innate Immune Responsiveness to Borrelia burgdorferi sensu lato in Exposed Asymptomatic Children and Children with Previous Clinical Lyme Borreliosis,

Clinical and Development Immunology, Vol. 2012, Article ID 294587, 10 pages
ELISPOT-LTT: New T-Cell Test a “Game Changer” for Lyme Disease

... The sensitivity of the ELISPOT is estimated at 84%, and the specificity is 94%...

... ELISPOT assays provide robust, highly reproducible data...

... ELISPOT can be retested to gain additional information in follow-up assays...

... the two-assays system (ELISPOT + CD57-cell count) complement each other in the quest to understand T cell-mediated immunity in vivo....

According to this new study:

82 - 100 % Specificity of Borrelia-Elispot-LTT

84 % Sensitivity of Borrelia Elispot-LTT
LTT: Evidence-based literature

LTT: Evidence-based literature

- Chenggang Jin et al.: An enhanced ELISPOT assay for sensitive detection of antigen specific T cells responses to Borrelia burgdorferi, Cells 2013, 2, 607-620; doi 10.3390/cells2030607
Currently the Elispot is available for:

- Borrelia burgdorferi (3 subspecies)
- Chlamydia pneumoniae
- Chlamydia trachomatis
- Ehrlichia
- Yersinia species
- Epstein Barr Virus (EBV)
- Cytomegalovirus (CMV)
CD57+Natural Killer cells (NK-cells): CD57 Flow Cytometry
CD3-/CD57+ T-Lymphocytes

1. Subpopulation of the CD56+ NK cells
2. Reduction indicates **chronic activity** of Lyme disease (symptoms > 1 year)
3. Reduction in untreated and inadequately treated Lyme disease
4. After the end of therapy for chronic Lyme disease: their normalization represents therapeutic success

CD3-/CD57+ T-Lymphocytes

Reference range (mean/range)

Lyme patient: 46 /ul / 8 – 160 /ul
Healthy: 164 /ul / 60 – 354 /ul

Source: J.J.Burrascoaro JR., MD, R. Stricker, MD, 2006 ILADS, Crowne Plaza Hotel, Center City Philadelphia
Low CD57 count: Flow Cytometry

Messung der CD57+ NK Zellen

Sample ID: 33
Acquisition Date: 09-Feb-11
Patient ID: 12171426

CD3-ICOS+ / CD57+

Gate: Lymphos

<table>
<thead>
<tr>
<th>Gate</th>
<th>Events</th>
<th>% Gated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphos</td>
<td>6720</td>
<td>100.00%</td>
</tr>
<tr>
<td>NK Zellen</td>
<td>1208</td>
<td>17.98%</td>
</tr>
</tbody>
</table>

NK-Zellen % = 17.98 %LY

CD57+ NK-Zellen %NK = 33.69 %NK Zellen

CD57+ NK-Zellen %LY = 6.06 %LY
Low CD57 count: Laboratory report

No serological evidence for an infection with Anaplasma.

CD 57 Flow Cytometry

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucocytes</td>
<td>3.31</td>
<td>/ul</td>
</tr>
<tr>
<td>Peripheral Lymphocytes</td>
<td>34.10</td>
<td>%</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>11.29</td>
<td>/μl</td>
</tr>
<tr>
<td>Natural killer cells</td>
<td>17.98</td>
<td>%</td>
</tr>
<tr>
<td>Natural killer cells</td>
<td>203</td>
<td>/μl</td>
</tr>
<tr>
<td>CD 57 positive NK-cells</td>
<td>6.06</td>
<td>%</td>
</tr>
<tr>
<td>CD 57 positive NK-cells</td>
<td>- 68</td>
<td>/μl</td>
</tr>
</tbody>
</table>

The CD57-cell-count is an indication for a chronic immune-suppressive situation caused by Borrelia burgdorferi.

Blood Count

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>14.8</td>
<td>g/dl</td>
</tr>
<tr>
<td>Erythrocytes</td>
<td>4.94</td>
<td>mill./ul</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>44.0</td>
<td>%</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0</td>
<td>pg</td>
</tr>
<tr>
<td>MCHC</td>
<td>33.6</td>
<td>g/dl</td>
</tr>
<tr>
<td>MCV</td>
<td>89.1</td>
<td>fl</td>
</tr>
<tr>
<td>Thrombocytes</td>
<td>222</td>
<td>tsd/ul</td>
</tr>
<tr>
<td>Leucocytes</td>
<td>3.31</td>
<td>tsd/ul</td>
</tr>
</tbody>
</table>

Differential Blood Count

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basoph. Granulocytes</td>
<td>0.60</td>
<td>%</td>
</tr>
<tr>
<td>Eosin. Granulocytes</td>
<td>3.30</td>
<td>%</td>
</tr>
<tr>
<td>Neutroph. Granulocytes</td>
<td>49.6</td>
<td>%</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>34.1</td>
<td>%</td>
</tr>
<tr>
<td>Monocytes</td>
<td>12.4</td>
<td>%</td>
</tr>
</tbody>
</table>

This document is intellectual property of Armin Schwarzbach MD PhD. Reproduction only with permission. Please note the copyright.
CD 57: Evidence-based literature

- Stricker RB, Winder EE. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immunology Letters 76 (2001) 43-48
Basic diagnostic tests for chronic Lyme Borreliosis

1. Borrelia IgM and IgG antibodies by the Immunoblot technique, including VlsE

2. Borrelia Elispot (LTT): actual Borrelia activity

3. CD3-/CD57+ T-Lymphocytes: chronic Borrelia activity

Monitoring 6 - 8 weeks after the end of therapies to verify whether the therapy has been successful or not

Laboratory STAGING process
Chlamydia pneumoniae, Borrelia burgdorferi and other infections can induce atherosclerosis?

LipoDens
a Rapid Single-step Ultracentrifugation Method for Determination of Lipoprotein Subfractions
Ultracentrifugation of a serum sample

100,000 rpm (400,000 x g)

3 h; 15°C

VLDL
IDL
LDL-1
LDL-2
LDL-3 (small, dense LDL = sdLDL)
HDL-2
HDL-3
Serumproteine
LipoDens laboratory report

Parameters

- Serum-Chol
- Serum-Trig
- LDL-Chol
- HDL-Chol
- LDL-Chol / HDL-Chol
- Trig / HDL-Chol
- Non-HDL-Chol
- VLDL-Chol
- VLDL-Chol / VLDL-Trig
- IDL-Chol
- sdLDL-Chol (LDL-3)
Effect of lifestyle changes on LP subfractions

![Bar chart showing cholesterol levels for different subfractions on two dates: 14.04.2009 and 12.07.2009. The chart includes VLDL, IDL, LDL-1, LDL-2, LDL-3, HDL-2, and HDL-3 subfractions.](chart.png)
Sources of error in laboratory work

Preanalytics
- Case-taking: 62%
- Selection: 30%
- Sampling: 40%
- Transport: 20%
- Processing: 15%

Analytics
- Analysis: 15%

Postanalytics
- Results interpretation: 23%

Share in %

This document is intellectual property of Armin Schwarzbach MD PhD. Reproduction only with permission. Please note the copyright.
Preanalytics: Use the right tubes in the right order when taking blood

- Serum tube (antibodies)
 Stability of antibodies: weeks

- CPDA tube (Elispot-LTT)
 Vitality of T-cells for LTT: Up to 3 days!
 DON'T USE HEPARIN FOR LTT!

- Heparin tube (CD57+cells)
 Stability of CD57-cells: Up to 3 days

- EDTA tube (Blood count for CD57+cells)
 Stability of leucocytes up to 3 days
Preanalytics: Use the right tubes in the right way after taking blood

- Serum tube: Keep upright!
- Serum tube after a lying position!
Preanalytics: Best workflow for best quality

- Shake all tubes carefully 5-10 times after taking blood
- Put all blood samples in an upright position for 30 minutes, centrifuge only serum (NOT other tubes)!
- Store at room temperature, not in the sun, no refrigerator or cooling of all tubes
- Protect all tubes in a special test kit for transportation/logistics
“Who entered the settings for the radiation lamp?”
PART 2: CO-INFECTIONS
LYME BORRELIOSIS and CO-INFECTIONS

Borrelia burgdorferi

+ Babesia
+ Bartonella
+ Ehrlichia/Anaplasma
+ Chlamydia
+ Rickettsia/Coxiella
+ Mycoplasma
+ Viruses (EBV, CMV, HSV)
Ehrlichia / Anaplasma

Bacteria: Ehrlichia chaffeensis, Anaplasma phagocytophilum (gram-negative, obligatory intracellular in granulocytes)

Vector: Ixodes ricinus

Spectrum of hosts: game (e.g. deer), domestic animals, humans

Symptoms (incubation time: days up to 4 weeks): rapid onset of beginning illness with fever, headache and prostration, headaches are “sharp, knife-like and often located behind the eyes”, muscle pain, not joint pain, neurological symptoms (length: 1 up to 60 days) up to lethal ending, rarely: diffuse vasculitic rash, including palms and soles (<10%)

Risk factors: the elderly, severe underlying illness, immune suppression (children)
Diagnosis of Ehrlichia/ Anaplasma

Ehrlichia/Anaplasma Elispot-LTT

Ehrlichia/Anaplasma-DNS-PCR in blood (EDTA blood): direct detection

Bacteria detection in Giemsa blood smear

Ehrlichia-IgM and Ehrlichia-IgG antibodies

Leucopenia / Thrombocytopenia / Anaemia

Elevated liver enzymes
Ehrlichia/Anaplasma: Therapy

- Macrolides (Azithromycin, Clarythromycin)
- Tetracycline (Doxycycline, Minocycline)
- Quinolones (Ciprofloxacin, Levofloxacin)
- Rifampicin (During pregnancy!)
Babesia

Bacteria: Babesia microti, Babesia divergens, B. WA1

Vector/transmission: Ixodes ricinus, blood transfusion

Hosts: game (e.g. deer), domestic animals, humans

Symptoms (incubation time 5 days – 9 weeks): Rapid onset of beginning illness with severe fever, headache (can be severe-dull, global, involves the whole head, described like the head is in a vice), sweats (usually at night, but can be day-sweats as well), fatigue (worse with exercise), “air-hunger”, need to sigh and take a deep breath, dry cough without apparent reason, stiffness of neck, nausea, diminished appetite, tiredness, feeling of weakness, permanent exhaustion even worse during stress, dizziness, haemolytic anemia, hemoglobinuria, haemangiomata, (seldom) hepatosplenomegaly, muscle pain, dizziness, mental dullness and slowing of reactions and responses, hypercoagualability, stomach pain, emotional lability, “mental dullness”, kidney problems, dyspnoea, influenza-like symptoms could be lethal!

Risk factors: Splenectomy, HIV, immune suppression (children), organ transplantation, the elderly
Babesia haemangiomata
Alan MacDonald MD: Editorial Comment: Geographies with Endemic Babesiosis do not exist in a vacuum. Endemic Lyme borreliosis travels with Endemic human Babesiosis!!!!!.
Babesia: Diagnosis

Babesia-DNS-PCR in blood (EDTA blood): direct detection

Babesia FISH (EDTA blood): direct detection

Blood smear: direct detection

Babesia-IgM and Babesia-IgG antibodies

Rarely:
- Haemolytic anaemia (erythrocytes, haptoglobin)
- Thrombocytopenia
- Leucocytopenia
- Increase of liver enzymes (sGOT, sGPT, sGGT)
- Increase of creatinine, urea
- Haemoglobinuria
Babesia: Therapy

- Clindamycin
- Malarone 250/200 mg 1x/day
- Malarone junior 65/25 mg 1x/day
- Atovaquon 750 mg 2x/day
- Lariam 250 mg
- Plaquenil (Hydroxychloroquine) 2 x 200 mg/day
- Artemisia annua 2 x 400 mg/day
Bartonella (cat scratch fever)

Bacteria: Bartonella henselae, Bartonella quintana (gram-negative, optional intracellular in endothelial cells / erythrocytes)

Vector/transmission: cat-scratch surface wounds, Ixodes ricinus (Germany/Europe: up to 40% of ticks are contaminated)

Symptoms (incubation time 3 - 38 days): headache (80%), tiredness (100%), amyostasia, muscle twitches, tremors, seizures, fever in the mornings (30%, in thrusts up to 6 weeks, otherwise 1 – 3 weeks), swollen lymph nodes, arthralgia (often), myalgia, insomnia, depression, agitation, severe mood swings, amentia, lack of concentration and alertness, dizziness, anxiety, outbursts, antisocial behaviour, restlessness, gastritis, intestinal symptoms, sore soles (especially in the morning), tender subcutaneous nodules along the extremities, occasional lymphadenopathy and light sweats; **Complications:** endocarditis, retinitis, epilepsy, aseptic meningitis, hepatosplenomegaly

BLO: No or only minimal musculoskeletal symptoms (according to JJ. Burrascano)!

Risk factors: immune suppression (children)
Bartonella striae
Bartonella: Diagnosis

PCR on Bartonella in blood (EDTA): direct detection

Histology (haemangioma/lymphadenitis)

Bartonella henselae/quintana-IgM and Bartonella henselae/quintana-IgG

Elevated vascular endothelial growth factor (VEGF) seldom increased, but in such cases activity marker for monitoring
Bartonella: Therapy

- Macrolides (Azithromycin, Clarythromycin)
- Tetracycline/Doxycycline
- Quinolones (Ciprofloxacin, Levofloxacin)
- Rifampicin
- Ceftriaxone/Cefotaxime
Rickettsia

Bacteria: Rickettsia conorii, R. rickettsii, R. helvetica, R. slovaca, R. prowazekii (not gram-stainable, obligatory intracellular in endothelial cells)

Vector/hosts: rodent, dogs, humans, Ixodes ricinus

Symptoms (incubation period 5 - 7 days): fever, lymphadenitis, exanthema

Complications (app. 13%): peri-/myocarditis, kidney insufficiency, pneumonia, encephalitis, gastrointestinal bleeding, anaemia, hepatitis, myalgia
Rickettsia: Diagnosis

PCR on Rickettsia in blood (EDTA blood): direct detection

Rickettsia rickettsia/conorii IgM and IgG antibodies
Rickettsia: Therapy

- **Doxycycline**/Tetracycline
- Ciprofloxacin
- Chloramphenicol
- Erythromycin (children)
Chlamydia pneumoniae infection

Bacteria: Chlamydophila pneumoniae (gram-negative, intracellular)

Vector/Transmission: airborne infection, human to ticks? Or reactivated in Lyme disease (horses, koalas, frogs are infected)

Symptoms: cough, slight throat pain, hoarseness, sinusitis, atypical pneumonia, meningoencephalitis, bronchiolitis obliterans, myocarditis, Guillain-Barre Syndrome

After infection (4 - 6 weeks): arthritis, tendovaginitis

Associations: Alzheimer’s, Multiple Sclerosis, depression, Fibromyalgia, ME/CFS, heart attacks, acute ischemic stroke (AIS), arteriosclerosis, autism, Parkinsonism, Rheumatoid Arthritis, and others

Risk factors: immune suppression (children/the elderly)
Chlamydia pneumoniae: Laboratory tests

Chlamydia pneumoniae EliSpot-LTT

Antibodies for Chlamydia pneumoniae-IgA and Chlamydia pneumoniae-IgG: Half-life of local-standing IgA-antibodies 2 weeks

New study IgA in acute ischemic stroke: 60.8 %

PCR of Chlamydia pneumoniae in blood/sputum/pharyngeal secretion: direct detection
Chlamydia pneumoniae: Therapy

- Macrolides (Azithromycin, Clarythromycin)
- Doxycycline/Minocycline
- Levofloxacin
- Metronidazole
Mycoplasma infection

Bacteria: Mycoplasma pneumoniae/fermentans (gram-positive, intracellular)

Transmission: airborne infection, human to human, ticks?

Symptoms: tiredness (100%), fever, joint pain, swelling of joints, muscle pain, headache, insomnia, anxiety, emotional volatility, lack of concentration, memory loss, autism

Risk factors: immune suppression (children/the elderly), ME/CFS, Gulf War I syndrome
Mycoplasma: Laboratory tests

Mycoplasma pneumoniae IgM- and -IgG antibodies

Bacterial culture

PCR of Mycoplasma pneumoniae in blood/sputum/secretion: direct detection
Mycoplasma: Therapy

- Macrolides (*Azithromycin, Clarythromycin*)
- Doxycycline/Minocycline
- Metronidazole
- Levofloxacin, Ciprofloxacin
Other complicating / reactivated viruses or bacteria

- Yersinia enterocolitica
- Herpes Simplex Virus Typ I/II
- Cytomegalovirus (CMV)
- Toxoplasma gondii
- Epstein-Barr-Virus (EBV)
- HHV 6
- HHV 8
- Coxsackie-Virus
"Chronic Lyme disease" is an infectious disease at a immuno-weakened host

<table>
<thead>
<tr>
<th>Symptom selection</th>
<th>Borrelia</th>
<th>Chl. pneumoniae</th>
<th>Chl. trachomatis</th>
<th>Mykoplasma</th>
<th>Bartonella</th>
<th>Ehrlichia</th>
<th>Rickettsia</th>
<th>Yersinia</th>
<th>Babesia</th>
<th>EBV virus</th>
<th>Coxsackie virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>limbs, tendon pain</td>
<td></td>
</tr>
<tr>
<td>muscle pain</td>
<td></td>
</tr>
<tr>
<td>joint pain</td>
<td></td>
</tr>
<tr>
<td>memory-concentration problems</td>
<td></td>
</tr>
<tr>
<td>headache</td>
<td></td>
</tr>
<tr>
<td>nausea, vomiting</td>
<td></td>
</tr>
<tr>
<td>encephalitis</td>
<td></td>
</tr>
<tr>
<td>fatigue, exhaustion</td>
<td></td>
</tr>
<tr>
<td>feverish feeling</td>
<td></td>
</tr>
<tr>
<td>chills, tremors</td>
<td></td>
</tr>
<tr>
<td>flu symptoms</td>
<td></td>
</tr>
<tr>
<td>stomach ache</td>
<td></td>
</tr>
<tr>
<td>diarrhea</td>
<td></td>
</tr>
<tr>
<td>Increased liver values</td>
<td></td>
</tr>
<tr>
<td>enlargement of the spleen</td>
<td></td>
</tr>
<tr>
<td>dark urine</td>
<td></td>
</tr>
<tr>
<td>urination with itching</td>
<td></td>
</tr>
<tr>
<td>deteriorated seeing</td>
<td></td>
</tr>
<tr>
<td>heart problems</td>
<td></td>
</tr>
<tr>
<td>cough</td>
<td></td>
</tr>
<tr>
<td>pneumonia</td>
<td></td>
</tr>
<tr>
<td>anemia</td>
<td></td>
</tr>
<tr>
<td>rash</td>
<td></td>
</tr>
<tr>
<td>Skin bleeding</td>
<td></td>
</tr>
<tr>
<td>lymphadenopathy</td>
<td></td>
</tr>
<tr>
<td>suppuring tonsils, dental probl.</td>
<td></td>
</tr>
</tbody>
</table>
The new co-infections checklist (to be filled out by the patient)

<table>
<thead>
<tr>
<th>Actual and former symptoms</th>
<th>Score-Points (filled in by physician/naturopath)</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach ache, gut problems</td>
<td>Ehrlichia:</td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>Babesia:</td>
<td></td>
</tr>
<tr>
<td>Diarrhoea intermittent</td>
<td>B. burgdorferi:</td>
<td></td>
</tr>
<tr>
<td>Fever or Feverish feeling</td>
<td>Bartonella:</td>
<td></td>
</tr>
<tr>
<td>Lack of concentration, memory disturbance, forgetfulness</td>
<td>Chlamydia pneumonia:</td>
<td></td>
</tr>
<tr>
<td>Encephalitis/Inflammation of the brain (NMR)</td>
<td>Chlamydia trachomatis:</td>
<td></td>
</tr>
<tr>
<td>Yellowish colour of the skin/eyes</td>
<td>Yersinia:</td>
<td></td>
</tr>
<tr>
<td>Painful joints, swollen joints</td>
<td>Mycoplasma:</td>
<td></td>
</tr>
<tr>
<td>General aches and pains, tendon problems</td>
<td>Coxsackie Virus:</td>
<td></td>
</tr>
<tr>
<td>Flu-like symptoms intermittent</td>
<td>EBV/CMV:</td>
<td></td>
</tr>
<tr>
<td>Rash(es)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small red/purple spots of the skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart problems, disturbance of cardiac rhythm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough, expectoration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaired liver function/liver laboratory values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia, bronchitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swollen lymph nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsilitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enlargement of the spleen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue / exhaustion, intermittent or chronic CFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle pain, muscle weakness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shivering, chill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blurred, foggy, cloudy, flickering, double vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea, vomiting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach ache, gut problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluation template for doctors/naturopaths

<table>
<thead>
<tr>
<th>Coinfections Evaluation Template</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>EBV</td>
</tr>
<tr>
<td>Hanta</td>
</tr>
<tr>
<td>Borna</td>
</tr>
<tr>
<td>Reo</td>
</tr>
<tr>
<td>Rickettsia</td>
</tr>
<tr>
<td>Chlamydia</td>
</tr>
<tr>
<td>Chlamydia</td>
</tr>
<tr>
<td>T. pallidum</td>
</tr>
<tr>
<td>T. (> 10% positive)</td>
</tr>
<tr>
<td>Mycoplasma</td>
</tr>
<tr>
<td>Candida</td>
</tr>
<tr>
<td>Yeast</td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td>HBV</td>
</tr>
<tr>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Hepatitis C</td>
</tr>
</tbody>
</table>
Co-infections checklist: Patient 1

15th Oct. 2010

B.C.
Name, First name

<table>
<thead>
<tr>
<th>Symptoms - Please tick the appropriate symptoms (to be filled in by the patient)</th>
<th>Score-Points (to be filled in by the physician)</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Stomach-ache</td>
<td>X Ehrlichia: 5</td>
<td>4</td>
</tr>
<tr>
<td>02 Anaemia</td>
<td>Babesia: 5</td>
<td>4</td>
</tr>
<tr>
<td>03 Diarhoea</td>
<td>Rickettsia: 5</td>
<td>4</td>
</tr>
<tr>
<td>04 Fever or feverish feeling</td>
<td>Bartonella: 6</td>
<td>3</td>
</tr>
<tr>
<td>05 Lack of concentration, memory disturbance, forgetfulness</td>
<td>Chl.pneumoniae: 8</td>
<td>1</td>
</tr>
<tr>
<td>06 Encephalitis (Inflammation of the brain)</td>
<td>Chl.trachomatis: 3</td>
<td>6</td>
</tr>
<tr>
<td>07 Yellowish colour of the skin (Jaundice)</td>
<td>Yersinia: 4</td>
<td>5</td>
</tr>
<tr>
<td>08 Painful joints</td>
<td>Mykoplasma: 7</td>
<td>2</td>
</tr>
<tr>
<td>09 General aches and pains</td>
<td>Coxsackie-Virus: 7</td>
<td>2</td>
</tr>
<tr>
<td>10 Flu-like symptoms</td>
<td>EBV: 6</td>
<td>3</td>
</tr>
<tr>
<td>11 Rash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Petechiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Heart-problems</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14 Cough</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Headache</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16 Impaired liver function/ liver parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pneumonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Swollen or inflamed lymph nodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Tonsillitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Enlargement of the spleen (Splenomegaly)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Fatigue / exhaustion</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>22 Muscle pain</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>23 Shivering</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>24 Blurred vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Nausea, vomiting</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>26 Dark urine</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>27 Painful or ichty urinating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory test results: Patient 1

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borrelia burgdorferi antibodies (ELISA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia-IgG antibodies (ELISA)</td>
<td>+</td>
<td>71.9</td>
<td>RU/ml</td>
</tr>
<tr>
<td>Borrelia-IgM antibodies (ELISA)</td>
<td></td>
<td>4.72</td>
<td>RU/ml</td>
</tr>
<tr>
<td>Borrelia burgdorferi antibodies (immunoblot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia-Blot-IgG antibodies</td>
<td>+</td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>Bands: OspC (+), p41 +, VlsE-Bb +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia-Blot-IgM antibodies</td>
<td></td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>Borrelia burgdorferi Elispot LTT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrelia burgd. full antigen</td>
<td>+</td>
<td>4</td>
<td>SI</td>
</tr>
<tr>
<td>Borrelia OSP mix (OSPA/OSPC/DbpA)</td>
<td>+</td>
<td>3</td>
<td>SI</td>
</tr>
<tr>
<td>Borrelia LFA-1</td>
<td></td>
<td>1</td>
<td>SI</td>
</tr>
<tr>
<td>Yersinia antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yersinia-IgG antibodies (EIA)</td>
<td>+</td>
<td>1.9</td>
<td>ratio</td>
</tr>
<tr>
<td>Yersinia-IgA antibodies (EIA)</td>
<td>+</td>
<td>8.6</td>
<td>ratio</td>
</tr>
</tbody>
</table>
Laboratory test results: Patient 1

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yersinia Elispot LTT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yersinia Elispot LTT</td>
<td>+</td>
<td>20</td>
<td>< 2</td>
</tr>
</tbody>
</table>

Chlamydia pneumoniae antibodies

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlam.pneum. IgG antibodies (ELISA)</td>
<td>+</td>
<td>1.2</td>
<td><0.8=neg.;>1.1=pos.</td>
</tr>
<tr>
<td>Chlam.pneum. IgA antibodies (ELISA)</td>
<td>+</td>
<td>3.5</td>
<td><0.8=neg.;>1.1=pos.</td>
</tr>
</tbody>
</table>

Chlamydia pneumoniae Elispot LTT

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydia pneumoniae Elispot LTT</td>
<td>+</td>
<td>18</td>
<td>< 2</td>
</tr>
</tbody>
</table>

Mycoplasma pneumoniae antibodies

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma pneumoniae IgG (EIA)</td>
<td>+</td>
<td>1.1</td>
<td>< 0.8 = neg.; >1.1 = pos.</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae IgM (EIA)</td>
<td>0.3</td>
<td>ratio</td>
<td>< 0.8 = neg.; >1.1 = pos.</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae IgA (EIA)</td>
<td>+</td>
<td>2.0</td>
<td>< 0.8 = neg.; >1.1 = pos.</td>
</tr>
</tbody>
</table>

Cytomegalovirus

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytomegalovirus IgG-antibodies (EIA)</td>
<td>+</td>
<td>3.7</td>
<td><0.8=neg.;>1.1=pos.</td>
</tr>
<tr>
<td>Cytomegalovirus IgM-antibodies (EIA)</td>
<td>0.3</td>
<td>ratio</td>
<td><0.8=neg.;>1.1=pos.</td>
</tr>
</tbody>
</table>

Cytomegalovirus Elispot LTT

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV Elispot LTT</td>
<td>+</td>
<td>4</td>
<td><2</td>
</tr>
</tbody>
</table>

This document is intellectual property of Armin Schwarzbach MD PhD. Reproduction only with permission. Please note the copyright.
Laboratory test results: Patient 1

<table>
<thead>
<tr>
<th></th>
<th>Results</th>
<th>Unit</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coxsackie-Virus antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackie-Virus-IgG Type B1 (IFT)</td>
<td>+</td>
<td>1:400</td>
<td>< 1:100</td>
</tr>
<tr>
<td>Coxsackie-Virus-IgA Type B1 (IFT)</td>
<td>+</td>
<td>1:100</td>
<td>< 1:10</td>
</tr>
<tr>
<td>Rickettsia antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickettsia rickettsii IgG-antibodies</td>
<td>+</td>
<td>1:256</td>
<td>< 1:64</td>
</tr>
<tr>
<td>Rickettsia typhi IgG-antibodies</td>
<td>< 1:64</td>
<td></td>
<td>< 1:64</td>
</tr>
<tr>
<td>Epstein-Barr-Virus antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV-CA-IgG-antibodies (EIA)</td>
<td>+</td>
<td>7.1</td>
<td>< 0.8=neg; >1.1=pos</td>
</tr>
<tr>
<td>EBV-EBNA-antibodies (EIA)</td>
<td>+</td>
<td>4.2</td>
<td>< 0.8=neg; >1.1=pos</td>
</tr>
<tr>
<td>EBV-CA-IgM-antibodies (EIA)</td>
<td>0.4</td>
<td></td>
<td>< 0.8=neg; >1.1=pos</td>
</tr>
<tr>
<td>Epstein-Barr-Virus Elispot LTT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBV-Elispot-LTT (lytic)</td>
<td>+</td>
<td>17</td>
<td>< 2</td>
</tr>
<tr>
<td>EBV-Elispot-LTT (latent)</td>
<td>+</td>
<td>8</td>
<td>< 2</td>
</tr>
<tr>
<td>CD 57 Flow Cytometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 57 positive NK cells</td>
<td>-</td>
<td>37</td>
<td>100-360</td>
</tr>
</tbody>
</table>
Summary Patient 1

Co-infections checklist (symptoms):
Multiple infection with
Borrelia burgdorferi + Chlamydia pneumoniae + Mycoplasma pneumoniae + Coxsackie virus +
Epstein Barr Virus + Rickettsia + Yersinia

Laboratory test results:
Multiple infection with
Borrelia burgdorferi + Chlamydia pneumoniae + Mycoplasma pneumoniae + Coxsackie-Virus + Epstein Barr Virus + Rickettsia rickettsii + Yersinia + Cytomegalovirus

5 bacteria + 3 viruses!
Correlation of modern laboratory tests for *Borrelia burgdorferi* and *Chlamydia pneumoniae*

<table>
<thead>
<tr>
<th></th>
<th>Borrelia burgdorferi</th>
<th>Chlamydia pneumoniae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgG / IgM LTT CD57</td>
<td>ChlP IgG ChlP IgA LTT</td>
</tr>
<tr>
<td>positive</td>
<td>22 = 44% 21 = 42% 27 = 56%</td>
<td>27 = 54% 26 = 52% 15 = 50%</td>
</tr>
<tr>
<td>negative</td>
<td>20 = 40% 12 = 24% 21 = 44%</td>
<td>20 = 40% 20 = 40% 10 = 33%</td>
</tr>
<tr>
<td>borderline</td>
<td>8 = 16% 17 = 34%</td>
<td>3 = 6% 4 = 8% 5 = 17%</td>
</tr>
<tr>
<td></td>
<td>no value = 2</td>
<td>no value = 20</td>
</tr>
</tbody>
</table>
Summary of my study: Borrelia burgdorferi and Chlamydia pneumoniae

- Sensitivities in my study (n=50):

 Chlamydia pneumoniae

 - Chl. Pneumoniae-IgA: 60 %
 - Chl. Pneumoniae-IgG: 60 %
 - Chl. Pneumoniae-Elispot-LTT: 67 %
 - **All 3 tests together: 78 %**

 Borrelia burgdorferi

 - Borrelia-Elispot-LTT 76 %
 - Borrelia-IgG/IgM-immunoblot: 60 %
 - CD57-count: 56 %
 - **All 3 tests together: 90 %**
PART 3: THERAPEUTIC OPTIONS
Modular therapeutic concept

1. Antibiotics
2. Nutrition (anti-inflammatory diet, basic nutrition)
3. Nutritional supplements (vitamins, minerals, essential fatty acids, probiotics)
4. Pain therapy
5. Complementary therapies (Naturopathy, Homeopathy, Biological Medicine): e.g. Samento, Cumanda, Noni, Banderol, Tacuna, Teasel, Cat’s claw, Artemisia annua, Resveratrol, Andrographis, garlic....
6. Rehabilitation and exercise therapy
7. Stress management and relaxation therapy
8. Mental Coaching, change of “Lifestyle”
Aims and goals of therapies

- Destruction of bacteria or viruses (for example antibiotics: bacteriostatic and bactericide antibiotics)
- Consider the different structures of bacteria or viruses (pleomorphic forms, biofilms, intracellular), and diagnose co-infections for the right selection of therapies
- Sufficiently long treatments (consider the life cycles of Borrelia burgdorferi and co-infections)
- Low risk-benefit ratio: Side effects

 Oral antibiotics:
 0,0001 – 0,04 % (1: 1 000 000 – 4: 10 000)
 Infusions with antibiotics:
 0,001 – 0,03 % (1: 100 000 – 3: 10 000)
Therapeutic options: antibiotics

Antibiotics for Borrelia, Chlamydia and Mycoplasma:

- Macrolides (Azithromycin, Clarythromycin)
- Doxycycline/Minocycline
- Metronidazole
- Cefalosporines (Ceftriaxone, Cefuroxim, Cefotaxim)

Remedies that have an intracellular action:

- Hydroxychloroquin (Plaquenil)
- Artemisia annua intensae
Therapeutic options: viruses and biofilms

Viruses (EBV, CMV, Coxsackie, etc.)

- Dimepranolacedoben/Inosin 50 mg/kg of body weight daily (Delimmun)
- Immunmodulation (vitamins, etc.)
- Herbal products / alternative pathways (e.g. Takuna)

Biofilms

- Serrapeptase
- Lumbrokinase
Lyme disease: Antibiotics Stage I (recent infection)

Stage I (recent infection)

Oral therapy (Duration: minimum until the “bull’s eye rash” or lymphocytic infiltration have disappeared): up to 4 - 6 weeks.

Doxycycline (from 8 years old upwards) (works against Ehrlichia as a co-infection)
Cefuroxim *
Amoxicillin *+ (Probenicid)

(* for children under 8 years and pregnant women)
Chronic Borrelia infections: Example for antibiotic strategy

Azithromycin 500/600 mg oral 1 x 1 per day/ 3 days per week
Contra-indications (Heart rhythm problems: QT-time, AV block, pregnancy)

+

Doxycycline 200/400 mg 1 x 1 per day
or
Minocycline 50/100 mg 1 x 1 per day

+

Hydroxychloroquine 200 mg 2 x 1 per day
or
Artemisia annua 200 mg 2 x 2 per day

(+)

After that 1-2 weeks single therapy with:

Metronidazole 400 mg 2 x 1 per day
Whole Body Concept – WBC

1. Improve compatibility and effectiveness of the antibiotics
2. Strengthen the immune system
3. Relieve pain
4. Produce “bad” conditions so as to inhibit the reproduction of bacteria
5. Mobilize “hidden” Borrelia bacteria in the connective tissue
6. Reduce the inflammation/cytokine storm and balance the TH 1 and TH 2 systems
7. Treat anxiety, depression, concentration problems, etc.
8. Support the organ system (liver, kidney, intestines, heart, brain)
9. Detoxify
10. Improve overall capacity/muscle power
Myer's Cocktail Immune System Support (ME/CFS…)

Vitamin C (Ascorbic acid) 5000 mg
Vitamin B1 (Thiamin) 100 mg
Vitamin B6 (Pyridoxine) 25 mg
Vitamin B12 (Cyanocobalamin) 1000 µg
Dexpanthenol 250 mg
Magnesium 3,125 mmol

in 500 ml isotonic saline solution

Infusion time around 60 minutes

1 infusion per week for 4 weeks

John Myers MD, John Hopkins University, Baltimore, Maryland, USA
Naturopathy: For example, Cowden Support Protocol - Herbal support for TH1 cells

- Samoto (Pentacyclic Alkaloid Type Uncaria tomentosa)
- Cumanda (Cmpsiandra angustifolia)
- Quina (Cinchona calisaya)
- Takuna (Cecropia strigosa)
- Noni (Morinda citirfolia)
- Banderol (Otaba species)
- Barberry (Mahonia aquifolium)
- Glucane (Saccheromyces cerivisiae)
- Procyanidin (Vitis vinifera)
- Melatonin
- DHEA
- Selen
- Zinc
- Magnesium
Naturopathy: For example, Cowden Support Protocol - Herbal support for TH2 cells

- Myrrh (*Commiphora molmol*)
- Statins (block cholesterol synthesis) – red wine
- Progesterone
Stress from infections

Autonomic nervous system

- Locus Coeruleus
- Amygdala
- Sleeplessness
- Anxiety
- Mood swings

Hypothalamus

- CRH
- Pituitary gland
 - ACTH
 - STH
 - Prolactin
 - β-Endorphines

Adrenal medulla
- Catecholamines
- Noradrenaline

Adrenal cortex
- ACTH
- Cortisol

β-Endorphines

Leucocytes

- CD4+/CD8+
- IL12 ↓, IL10 ↑
- TH1 ↓, TH2 ↑

Immune system

Adrenal cortex

- ACTH
- Cortisol

Nucleus Tractus Solitarius
- IL1

Adrenal fatigue

Sympathetic

- Catecholamines
- Adrenal medulla
- Noradrenaline

Adrenal cortex

- ACTH
- Cortisol

TH1 ↑

TH2 ↓
Infections: Herbal support

Adrenal fatigue
- Schizandra
- Astragalus
- Rhododendron caucasicum
- Ginseng
- Rhodiola

Stress/Anxiety/Sleeplessnes
- Amantilla (Valeriana officinalis)
Dr. Leo Joosten, Department of Medicine, Radboud University, Netherlands:

If you believe in chronic Lyme disease, what do you believe are the most effective ways to treat it?

“If chronic or persistent Lyme disease exists, we will need more than antibiotics for treatment. Anti-inflammatory components or anti-cytokine treatment will be options.”
Summary and conclusions

- Sensitivity of ELISA in chronic Lyme disease: 32 - 42%
- Sensitivity of Immunoblot in chronic Lyme disease: 60%
- ELISA tests are too insensitive and useless
- Negative antibodies in the Immunoblot cannot exclude Lyme disease
- IgM antibody persistence is a sign of chronic Lyme disease
- There is a possibility of false negative CSF results
- 86% of patients with chronic Lyme disease are co-infected with Chlamydia pneumoniae (multiple infections)
- Borrelia or Chlamydia/Mycoplasma pneumoniae symptoms are not highly specific (overlapping symptoms)
- Patients can be co-infected by other bacteria in the tick (Babesia, Bartonella, Rickettsia, Ehrlichia/Anaplasma)
- **Ranking** of the co-infections can be performed by a modern co-infections checklist
Summary and conclusions

- **Staging** of Lyme disease and co-infections should be performed by modern laboratory tests: recombinant Borrelia Immunoblots, incl. VlsE, Elispot-LTT, CD57

- Multiple infections Borrelia+Chlamydia+Mycoplasma: Very often they are the reason for ME/CFS, Multiple Sclerosis, ALS, Parkinsonism, Dementia, Fibromyalgia, Rheumatoid Arthritis, Autism, Apoplectic Strokes, Heart attacks

- Give preference to antibiotic that have intracellular action

- Use combinations of antibiotics: Azithromycin/Clarythromycin + Doxycycline/Minocycline + Artemisia annua intensae

- Use additional therapies against biofilms

- No antibiotics without probiotics!
Thank you very much for your attention!

Armin Schwarzbach M.D. Ph.D.
CEO ArminLabs
Specialist for laboratory medicine

ArminLabs
Please contact AONM for the ArminLabs tests:
86154 Augsburg (Germany)
First Floor, Suite 8
22 Harley Street
London W1G 9PL
Tel. 0845 505 1296
www.aonm.org
info@aonm.org