

The Mitochondria and Chronic Health Conditions, Part 1

Professor Brigitte Koenig, Magdeburg Molecular Detections Gilian Crowther MA (Oxon), Dip NT/ND

www.aonm.org

Copyright AONM, All rights reserved

Our mitochondria power our cells, and a lot more ...

Biovisions Powering the Cell, Mitochondria, biovisions.mcb.harvard.edu https://www.youtube.com/watch?v=RrS2uROUjK4

BioVisions

at Harvard University

The electron transport chain (ETC) – 5 complexes

36 ATP are generated along the electron transport chain from glucose; 146 (oleic acid) and more from fats

We (should) produce our body weight in ATP each day, and convert 10,000 x more energy than the sun every second

How much ATP does the body at rest produce every day?

70 KG!

HOME

ABOUT

BOOKS

PUBLICATIONS

SEMINARS

MEDIA

ICK LANE

"Gram per gram, ... you are converting 10,000 times more energy than the sun every second." Professor Nick Lane, UCL

NEWS

CONTACT

Nick Lane Personal Webpage > Power, Sex, Suicide – Part 2. The Vital Force: Proton Power and the Origin of Life

POWER, SEX, SUICIDE – PART 2. THE VITAL FORCE: PROTON POWER AND THE ORIGIN OF LIFE

Energy and life go hand in hand. If you stop breathing, you will not be able to generate the energy you need for staying alive and you'll be dead in a few minutes. Keep breathing. Now the oxygen in your breath is being transported to virtually every one of the 15 trillion cells in your body, where it is used to burn glucose in cellular respiration. You are a fantastically energetic machine. Gram per gram, even when sitting comfortably, you are converting 10,000 times more energy than the sun every second.

This sounds improbable, to put it mildly, so let's consider the numbers. The sun's luminosity is about 4 x 1026 watts and its total mass is 2 x 1030 kg. Over its projected lifetime, about 10 billion years, each gram of solar material will produce about 60 million kilojoules of energy. The generation of this energy is not explosive, however, but slow and steady, providing a uniform and long-lived rate of energy production. At any one moment, only a small proportion of the sun's vast mass is involved in nuclear fusions, and these reactions take place only in the dense core. This is why the sun can burn for so long. If you divide the luminosity of the

https://nick-lane.net/chapters/power-sex-suicide-part-2-vital-force-proton-power-origin-life/

What do we lose if our mitochondria go down?

Source: Chandel NS. Mitochondria as signaling organelles. BMC Biology 2014 12:34; Chandel NS et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998; Ledderose C et al. Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. <u>J Biol Chem.</u> 2014); Quintana A et al. T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A. 2007; Bao Y. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling. J Biol Chem. 2014

Acquired conditions in which mitochondrial dysfunction has been implicated

Table 2

6

Acquired conditions in which mitochondrial dysfunction has been implicated

Diabetes (Wallace, 2005; Fosslien, 2001; West, 2000) Huntington's disease (Stavrovskaya and Kristal, 2005) Cancer (Wallace, 2005), including hepatitis-C virus-associated hepatocarcinogenesis (Koike, 2005) Alzheimer's disease (Stavrovskaya and Kristal, 2005) Parkinson's disease (Stavrovskaya and Kristal, 2005) Bipolar disorder (Stork and Renshaw, 2005; Fattal et al., 2006) Schizophrenia (Fattal et al., 2006) Aging and senescence (Wallace, 2005; Savitha et al., 2005; Skulachev and Longo, 2005; Corral-Debrinski et al., 1992; Ames et al., 1993) Anxiety disorders (Einat et al., 2005) Nonalcoholic steatohepatitis (Lieber et al., 2004) Cardiovascular disease (Fosslien, 2001), including atherosclerosis (Puddu et al., 2005) Sarcopenia (Bua et al., 2002) Exercise intolerance (Conley et al., 2000) Fatigue, including chronic fatigue syndrome (Fulle et al., 2000; Buist, 1989), fibromyalgia (Park et al., 2000; Yunus et al., 1988), and myofascial pain (Yunus et al., 1988)

- What pathways may have become compromised?
- ATP Profile
- Mitochondrial Health Index
- Lactate/Pyruvate Index

Some of the energy-generation pathways that may have become compromised

Macronutrients

Are macronutrient fuels accessing the cell sufficiently? Are the fuels the most efficient for generating mitochondrial energy?

Membranes

Are the cellular membranes of the right composition/sufficiently intact? Any blockages in the membranes?

Micronutrients/cofactors

Correct substrates for the Krebs cycle? Are the mitochondria able to metabolise the substrates? If not, why not? Do the complexes of the electron transport chain have the right substrates?

Oxidative stress

High ROS within the cell? High ROS within the mitochondria?

Source: *MMD, O&M und Ernaehrung,* Mitochondrien – texts from 2016/No. 156 through to 2020/No. 171 Prof. Dr. rer. nat. Brigitte König; *mitochondrial research by Martin D. Brand and others (e.g. <u>https://pubmed.ncbi.nlm.nih.gov/28270511/</u>); <u>https://www.nature.com/articles/s41467-019-10015-4</u>; other references available on request*

Mitochondrial mass/composition

Insufficient numbers of mitochondria, or non-intact?

- What pathways may have become compromised?
- ATP Profile
- Mitochondrial Health Index
- Lactate/Pyruvate Index

ATP Profile – the mitochondria at rest

XXX

Max-Mustermann Straße 5 xxx Berlin

MMD GmbH & Co. KG Breiter Weg 10a 39104 Magdeburg Prof. Dr. Brigitte König CEO/ Scientific Director Prof. Dr. Gerhard Jorch Medical Director	Tel. office: Tel. laboratory: Fax: E-Mail: Web:	+49 391 535 37 97 +49 391 611 72 09 +49 391 535 38 45 info@mmd-web.d www.mmd-web.d	, ; ; ;				
Patient	AW	Date of birth	01.01.1990				
Order No.:		Entry on	23.07.2021				
Date of sample Sample type Results status	22.07.2021 CPDA vacutainer Final report	Validated by Cell type Results status on	Prof. Dr. Brigitt PBMC 23.07.2021	te König			
ATP profile							
Test	Result	Unit	Reference ran	ge		R	esult [%]
Total ATP	0.8	fmol/cell	•				
Mitochondrial ATP capacity	0.4	fmol/cell					50
Glycolytic ATP capacity	0.5	fmol/cell		<u> </u>			63
Reserve ATP capacity	0.10	fmol/cell	•				13
Reference range total ATP							
fmol/cell <0.8	0.8 - 1.0	1.0 - 1.2 1.2	- 1.4 1.4 - 1.6	1.6 - 2.0	2.0 - 2.5	2.5 - 3.0	3.0 - 5.0
Reference range mitochondrial A	TR capacity						
fmol/cell <0.8	0.8 - 1.0	1.0 - 1.2 1.2	- 1.4 >1.4				
Reference range glycolytic ATP co	anacity						
fmol/cell <0.8	0.8 - 1.0	1.0 - 1.2 1.2	- 1.4 >1.4				
Reference range reserve ATP cap	acity						
fmol/cell <0.2	0.2 - 0.3	0.3 - 0.4 0.4	- 0.6 0.6 - 0.9	0.9 - 1.0	1.0 - 1.2	1.2 - 1.5	>1.5

Impaired glycolytic ATP capacity: Could insulin resistance be an issue? In 95% of the US population, Dr. Pizzorno said last w/e*

Insulin plays a significant role in this array of glycolysis regulation. In the short term, **insulin**, **through insulin signaling pathways controls glucose** entry and regulates the levels of F-2,6-P₂, a key regulator of glycolysis.

E ScienceDirect.com https://www.sciencedirect.com > article > abs > pii

Regulation of glycolysis-role of insulin - ScienceDirect.com

Scheme outlining insulin signaling and the regulation of glycolysis. In various tissues, insulin controls distinct components of glycolysis. IR, insulin receptor; IRS, insulin receptor substrate; PI3K, phosphotidylinositol-3-kinase; PIP2, phosphotidylinositol-4,5-phosphate; PIP3, phosphotidylinositol-3,4,5-phosphate; GLUT4, glucose transport 4; and PDK, phosphotidylinositol-dependant kinase.

Download: Download full-size image

Figure 1. Major steps of glycolysis. Glycolysis is the pathway for the generation of pyruvate/lactate from glucose. Depending on cell types in which glycolysis occurs, glucose uptake is mediated mainly by glucose transporter 2 (GLUT2) or GLUT4. Following glucose uptake, rates of glycolysis are determined at steps of glucose phosphorylation, which is catalyzed by hexokinase II or hexokinase IV (glucokinase, GK), and the generation of fructose-1,6-bisphosphate, which is catalyzed by 6-phosphofructo-1-kinase (6PFK1). The latter is activated by fructose-2,6-bisphosphate (F2,6P₂), whose production is controlled by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PFK2/FBPase2). DHAP, dihydroxyacetone phosphate; TCA, tricarboxylic acid cycle.

Source: 1. Wu C, Khan SA, Lange AJ. Regulation of glycolysis-role of insulin. Exp Gerontol. 2005 Nov;40(11):894-9; **2** Hers HG. Mechanisms of blood glycose homeostasis. Unberit Metab Dis. 1990:13(4):395-410: Nutrition Medicine Inst

2. Hers HG. Mechanisms of blood glucose homeostasis. J Inherit Metab Dis. 1990;13(4):395-410; Nutrition Medicine Institute (NMI) Summit, London, "Mitochondrial Nutrition for Energy, the Brain, and Healthy Ageing" < Oct. 11/12, 2024

Lots can be done to manage & resolve insulin resistance/ MetSyn

Figure 4. Main nutrient impact on metabolic syndrome (MetS) components. The MetS is a constellation of pathologic conditions which includes hyperglycemia, insulin resistance, dyslipidemia (hypertriglyceridemia and low high density lipoprotein (HDL)-cholesterol levels), central obesity, and hypertension. Several studies have demonstrated that nutrients such as oleic acid monounsaturated fatty acid (MUFA), omega-3 polyunsaturated fatty acids (PUFAs), vitamins A, B, C, D, and E, selenium and zinc elements, lycopene, olive oil polyphenols, resveratrol, organosulfured compounds, and catechins have a positive impact on MEtS components, improving the onset and development of the disease.

Source: García-García FJ, Monistrol-Mula A, Cardellach F, Garrabou G. Nutrition, Bioenergetics, and Metabolic Syndrome. Nutrients. 2020 Sep 11;12(9):2785...

Impaired glycolytic ATP capacity: Cofactors may be lacking to get pyruvic acid into the mitochondria

Source: ©Genova Diagnostics • A.L. Peace-Brewer, PhD, D(ABMLI), Lab Director • CLIA Lic. #34D0655571 • Medicare Lic #34-8475 (with permission)

Natural sources of B vitamins

B1 - Asparagus; Beef; Brewer's yeast; Lamb; Legumes; Liver; Nuts; Pork; Rye; Spirulina; Wheat germ; Whole grains. Synergistic Nutrients -Vitamins B2, B3, B5, B6, B12, Cu, Choline, Mn, Mg, Mo, Phosphate, Zn

B2 - Almonds; Asparagus; Avocados; Beans;
Currants; Eggs; Milk and dairy products; Organ meats; Sprouts; Wholegrain cereals; Yeast;
Broccoli. Synergistic Nutrients - Vitamin A, B1,
B3, B5, B6, B12, Biotin, Cr, Cu, Cysteine, B9,
Glutathione, Insulin, Fe, Mg, Mo, Phosphate, K,
Thyroxine, Zn

B3 - Almonds; Beef; Chicken; Eggs; Fish; Halibut;
Legumes; Mackerel; Meat; Peanuts; Salmon;
Sardines; Sunflower seeds; Yeast. Synergistic
Nutrients - Vitamin B1, b2, B6, B12, C, Cr, Zn, K, Mn,
P, Cu, B9, Fe, Mg, Methionine, SAMe, Mo, Se,
Tryptophan

B5 - Avocado; Baker's yeast; Beans; Brains; Blue vein cheese; Egg yolk; GLV; Heart; Kidney; Lentils; Liver; Lobster; Milk; Mushrooms; Oranges; peanut butter; Peas; Royal jelly; Sweet potato; Wholegrain cereal. Synergistic Nutrients - Vitamins B1, B2, B3, B12, C, Biotin, Cr, Cysteine, B9, Glycine, Methionine, Phosphate, Na, K, Zn B6 - Avocado; Bananas; Brewer's yeast; Carrot; Cereal;
Chicken; Egg yolk; Ham; Legumes; Lentils; Mackerel;
Oatmeal; Offal; Peanuts; Salmon; Tuna; Sunflower
seeds; Walnuts. Synergistic Nutrients - Vitamin B1, B2,
B3, B5, B12, C, E, Biotin, Cr, Cu, B9, Leucine, Mg, K,
Phosphate, Se, Na, Zn

B7 - Biotin - Bacterial synthesis in gut; Bean sprouts;
Butter; Bulgar wheat; Cashews; Egg yolk; Kidney; Liver;
Milk; Oats; Peanuts; Soy beans; Wholegrain cereal; Yeast.
Synergistic Nutrients - Bifidobacterium, Cr, Vitamin B2,
B3, B5, B6, B12, B9, Mg, Mn

B9 - Folic Acid - Barley; Beans; Eggs; Endive; GLV;
Lentils; Liver; Organ meats; Sprouts; Soybeans;
Yeast. Synergistic Nutrients - Vitamin B2, B3, B5, B6,
B12, C, Biopterin, Biotin, Cu, Fe, Mg, Methionine,
Serine, Zn.

B12 - Bacterial synthesis occurs in the gut. Brain;
Clams; Egg yolk; Herring; Kidney; Liver wurst; Meat;
Milk; Oysters; Salmon; Sardines; Swiss cheese.
Synergistic Nutrients - Vitamin A, B1, B2, B5, B6, C,
E, Biotin, Ca, Cobalt, Cu, B9, Fe, Methionine, NAcetyl cysteine, Omega-3, Phosphate, Se.

15

GLV = green leafy vegetables

Source: Osiecki H (2014) The Nutrient Bible 9th Edition Bio Concepts Publishing Australia; http://www.alfiestrust.com/wpr0.2024 content/uploads/2017/09/NutrientSourcesVitsMinsAGT.pdf

Thiamine a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points

Review Hiding in Plain Sight: Modern Thiamine Deficiency

Chandler Marrs ^{1,*}^(D) and Derrick Lonsdale ²

- ¹ Independent Researcher, Henderson, NV 89074, USA
- ² Emeritus, Cleveland Clinic, Cleveland, OH 44195, USA; derricklonsdale@hotmail.com
- * Correspondence: drchandlermarrs@gmail.com

Abstract: Thiamine or vitamin B1 is an essential, water-soluble vitamin required for mitochondrial energetics—the production of adenosine triphosphate (ATP). It is a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points and at critical junctures for the glucose, fatty acid, and amino acid pathways. It has a very short half-life, limited storage capacity, and is susceptible to degradation and depletion by a number of products that epitomize modern life, including environmental and pharmaceutical chemicals. The RDA for thiamine is 1.1–1.2 mg for adult females and males, respectively. With an average diet, even a poor one, it is not difficult to meet that daily requirement, and yet, measurable thiamine deficiency has been observed across multiple patient populations with incidence rates ranging from 20% to over 90% depending upon the study. This suggests that the RDA requirement may be insufficient to meet the demands of modern living. Inasmuch as thiamine deficiency syndromes pose great risk of chronic morbidity, and if left untreated, mortality, a more comprehensive understanding thiamine chemistry, relative to energy production, modern living, and disease, may prove useful.

Keywords: thiamine deficiency; thiamine deficiency metabolic disease; thiamine deficiency hyperglycemia; thiamine deficiency critical illness

Citation: Marrs, C.; Lonsdale, D. Hiding in Plain Sight: Modern Thiamine Deficiency. *Cells* 2021, 10, 2595. https://doi.org/10.3390/ cells10102595

check for updates

Academic Editor: David Sebastián

1. Introduction

"There is often something sinister about familiar concepts. The more familiar or 'natural' they appear, the less we wonder what they mean; but because they are widespread and well-known, we tend to act as if we know what we mean when we use them [1]."

MDPI

"Thiamine or vitamin B1 is an essential, water-soluble vitamin required for mitochondrial energetics—the production of adenosine triphosphate (ATP). It is a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points and at critical junctures for the glucose, fatty acid, and amino acid pathways."

Source: Marrs C, Lonsdale D. Hiding in Plain Sight: Modern Thiamine Deficiency. Cells. 2021 Sep 29;10(10):2595, with thanks to Elliot Overton.

Natural sources of magnesium

Magnesium - Almonds; Barley; Brewer's yeast; Cashews; Cocoa; Cod; Eggs; Figs; Kelp; GLV; Legumes; Lima beans; Mineral water; Molasses; Parsnips; Seeds; Soy beans; Wholegrain cereals. Synergistic Nutrients - Vitamins B1, B6, C, D, Glucose polymer, K, B, Ca. Heavy metal antagonists - Pb, Cd.

Right balance of electrolytes vital in the "metallome" (1/2)

Free Radical Biology and Medicine Volume 182, March 2022, Pages 182-191

Invited Review Article

Mineral requirements for mitochondrial function: A connection to redox balance and cellular differentiation 🛠

David W. Killilea ^a A ⊠, Alison N. Killilea ^b Show more ∨ + Add to Mendeley ≪ Share 55 Cite

https://doi.org/10.1016/j.freeradbiomed.2022.02.022 ス Under a Creative Commons license ス

Highlights

- Eleven of the 12 minerals essential for human h roles within mitochondrial metabolism.
- Increased oxidative stress within the mitochonc consequence of aberrant <u>mineral homeostasis</u>.
- Low oxidative stress is key for long-lived cell lin mineral levels is important for cellular potency.

Right balance of electrolytes vital in the "metallome" (2/2)

Table 1. Metals and metalloids known in the mammalian mitochondria.

Element	Serum/plasma concentration	Entry into in mitochondria	Mitochondrial concentration	Sequestration	Metabolic role(s)
Confirme	ed essential:				
Ca	2.1–2.6mM	yes	0.1-20µM	yes	yes
Со	2-8nM	yes	50–90nM	yes	yes
Cr	1–31 nM	-	-	-	-
Cu	11-30µM	yes	71–115µM	yes	yes
Fe	9–31µM	yes	0.5–1.1 mM	yes	yes
К	3.5–5.1 mM	yes	150–180mM	yes	yes
Mg	0.7–1.1 mM	yes	0.4-0.7mM	yes	yes
Mn	8–18nM	yes	3–16µM	yes	yes
Мо	1–31 nM	yes	1–6µM	yes	yes
Na	136-145 mM	yes	5–50mM	yes	yes
Se	0.6–1.8µM	yes	-	-	yes
Zn	11–18µM	yes	167–300µM	yes	yes

Source: https://www.sciencedirect.com/science/article/pii/S0891584922000752

Thyroid hormone, T3, stimulates mitochondrial metabolism

check for updates

Citation: Cioffi, E: Giacco, A.; Goglia

F.; Silvestri, E. Bioenergetic Aspects

of Mitochondrial Actions of Thyroid

Hormones, Cells 2022, 11, 997.

https://doi.org/10.3390/

cells11060992

Important to do a thyroid panel

membrane binding

Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones

Federica Cioffi[†], Antonia Giacco[†], Fernando Goglia and Elena Silvestri^{*}

Department of Science and Technology, University of Sannio, federica.cioffi@unisannio.it (F.C.); antonia.giacco@unisannio.i Correspondence: silvestri@unisannio.it; Tel.: +39-082-430-51 † These authors contributed equally to the work.

Abstract: Much is known, but there is also much mor hormones (TH) exert on metabolism. Indeed, despite tl as one of the most important regulators of metabolic mechanisms control/regulate these actions. Given tl mitochondria are the main cellular site where metabolic have been the subject of extensive investigations. In 1 cerning both thyroid hormones (such as the mechani: active TH derivatives) and the mechanisms of energy 1 ics, respiratory chain organization in supercomplexes pathways of investigation in the field of the control of of action of TH at cellular level. In this review, we higl the complex relationship between TH, including some respiratory chain.

Keywords: iodothyronines; bioenergetics; mitochondri

1. Introduction

ω

1.1. Respiratory Chain, Oxidative Phosphorylation The oxidative phosphorylation system (OXPI

Figure 1. Schematic summary of the main cellular pathways through which TH regulate mitochondrial functions. TH (T4/T3) move from outside the plasma membrane into the cytoplasm (trough passive diffusion or active transport) or bind to surface receptor such as integrin α vb3. In the cytoplasm, deiodination allows the conversion of T4 into T3 by DIO1 or DIO2 action, and T3 can bind

Source: Chocron ES et al. The trifunctional protein mediates thyroid hormone receptor-dependent stimulation of mitochondria metabolism. Mol Endocrinol. 2012 Jul;26(7):1117-28; Cioffi F, Giacco A et al. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells. 2022 Mar 15;11(6):997.

If mitochondrial ATP capacity on the ATP profile is stronger: fatty acids are getting in

There are however mitochondrial fatty acid oxidation disorders (FAODs) (inherited metabolic diseases) that affect the transport of fatty acids into mitochondria:

• Carnitine transporter defect

- Carnitine-acylcarnitine translocase (CACT) deficiency
- LCHAD deficiency
- Etc.

Source: ©Genova Diagnostics = A.L. Peace-Brewer, PhD, D(ABMLI), Lab Director = CLIA Lic. #34D0655571 = Medicare Lic #34-8475 (with permission)

- What pathways may have become compromised?
- ATP Profile
- Mitochondrial Health Index
- Lactate/Pyruvate Index

Mitochondrial Health Index: mitochondrial performance under pressure; top page

Requisition:Mitochondrial Health Index / PBMCs

Sample type: Blood in CPDA vials

Summary

		Target value
	Patient's value	(optimal)
Mitochondrial Health Index (MHI)	0.00	>2.5
Mitochondrial Bioenergetics		
Coupling efficiency, %	86	90-95
Reserve respiration capacity, %	0	>400
Cellular oxygen consumption profile		
Non-mitochondrial respiration as a share of total		
respiration, %	32	<10
Proton leak as a share of total respiration, %	10	5-10
Share of respiration used for mitochondrial ATP generation,		
%	58	>90
ATP turnover rate (mitochondrial oxygen utilisation	n)	
ATP base turnover, %	100	<20
ATP reserve, %	0	>80
Basal oxygen consumption rate in pmol oxygen/min	28.75	
Potential maximum oxygen consumption rate in pmol		
oxygen/min	22	>500
Cellular energy phenotype		
At rest	Resting	Resting
On energy demand	Resting	Energetic/Aerobic
Metabolic potential, mitochondrial percentage	84	>350
Metabolic potential, glycolysis percentage	151	>350
Oxygen consumption/glycolysis on energy demand	Strong preference for anaerobic glycolysis	

	Optimal	Slightly high / low	Moderately high/low	Very high/low	Extremely high/low
--	---------	---------------------	------------------------	---------------	--------------------

28.10.2024

Second page of the MHI, with a summary derived from the markers

	None	Slight	Moderate	Considerable	Extreme	
Vitochondrial dysfunction					1	
Cellular imbalance				\checkmark		Unregulated ROS in
indications of						the cells
ncreased formation of oxygen radicals in the cell		No √ Yes	Insufficient A formation on demand	ſP energy	No √ Yes	Compromised funct
ncreased formation of oxygen radicals in the nitochondria		✓ No Yes	Limited gluco: utilisation		No Yes	the electron transpo
Restricted function of he electron transport chain in the nitochondria		No √ Yes				• Limited no. of
imited number of functionally intact nitochondria		No √ Yes	Acute inflamn active chronic inflammation autoimmune	nation, ; / disease	✓ No Yes	functionally intact mitochondria
		Further d	iagnostic oppor	tunities for perso	onalised therapy	Insufficient ATP on demand

Investigate mitochondrial mass (mtDNA:nDNA/number of mitochondria) and analyse mitochondrial mutations that influence ATP generation (e.g., the common deletion mt4977bp).

Downregulation of the mitochondria always worth considering: the CDR – a protective mechanism

Dr. Robert Naviaux, who runs The Mitochondrial and Metabolic Disease Center at the University of California, introduced the concept of the Cell Danger Response in an article in Mitochondrion in 2013: "The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis."

Threats are for example:

- Biological viruses, bacteria, fungi, parasites
- Chemical e.g. heavy and trace metals like lead, mercury, cadmium, arsenic, and nickel, certain electrophilic aromatic chemicals like the plasticizer bisphenol A, chemical flame retardants like brominated diphenyl ethers (BDEs), and certain halogenated pesticides like chlorpyrifos and DDT.
- Physical e.g. heat, salt, pH shock, UV/ionising radiation
- And also psychological, because psychological trauma also has phyiological repercussions

When danger is detected, mitochondria alter their cellular metabolism to shield the cell from further injury. They downregulate as a protective mechanism.

IHCAN mitochondrial medicine

The Cell Danger **Response:** a new paradigm for understanding chronic disease?

When danger threatens, mitochondria alter their cellular metabolism to shield cells from injury - triggering a cascade of responses affecting methylation, energy production and more. GILIAN CROWTHER, Director of Research for the Academy of Nutritional Medicine, explains how the ground-breaking research of Prof Robert Naviaux has unlocked a new understanding of mitochondria's pivotal role in chronic disease.

r Robert Naviaux, MD, PhD, who runs the Mitochondrial and Metabolic Disease Centre at the University of California, first introduced the concept of the Cell Danger Response in an article in Mitochondrion in 2013: "Metabolic features of the Cell Danger Response". (1)

Dr Naviaux is a Professor of Genetics, in the Departments of Medicine, Paediatrics, and Pathology. He directs a core laboratory for metabolomics at UC San Diego. He is an internationally known expert in human genetics, inborn errors of metabolism, metabolomics, and mitochondrial medicine. He is the discoverer of the cause of Alpers syndrome - the oldest

homeostasis". This is a response activated when a cell encounters a threat that could injure or kill it. Threats that he cites include:

Biological – viruses, bacteria, fungi, parasites.

Chemical – eg heavy and trace metals like lead, mercury, cadmium, arsenic, and nickel, certain electrophilic aromatic chemicals like the plasticiser bisphenol A, chemical flame retardants like brominated diphenyl ethers (BDEs), and certain halogenated pesticides like chlorpyrifos and DDT.

Physical – eg heat, salt, pH shock, UV/ionising radiation.

And also psychological, because psychological trauma also has physiological repercussions.

Source: Naviaux RK. Metabolic features of the Cell Danger Response. Mitochondrion. 2014 May;16:7-17 https://www.ihcan-mag.com/imag/aonm.pdf

Many pathogens/contaminants can prevent mitochondria from using their oxidative phosphorylation

Address, or at least log as key influencing factors:

- Viral/bacterial infections: These increase non-mitochondrial respiration because the cell uses oxygen to try to kill the pathogens rather than for energy¹; deplete the host's mitochondrial anti-viral defences to keep themselves alive²; Borrelia also steal ATP from their host to fuel their flagellum, etc.³
- Biotoxins/mycotoxins: Ochratoxin A uncouples the mitochondria and inhibits Complex 2⁴
- **Some parasites:** E.g. Toxoplasma, which can tether and disable mitochondria⁵

- **Heavy metals:** Al induces permeability (MPT)⁶, Hg induces mito dysfunction⁷, Arsenic increases mitochondrial ROS formation, lipid peroxidation and mitochondrial membrane potential collapse⁸
- **Pesticides, herbicides:** e.g. glyphosate: blocks Shikimate pathway: bacterial energy generation,⁹ it also chelates minerals, including copper ...

Microbiome

- **Chemical contaminants:** e.g. Lindane¹⁰ **Medications:** Block various ETC complexes
- Household chemicals
- Spike protein **EMFs**

Source: 1. Naviaux RK. Metabolic features of the Cell Danger Response. Mitochondrion. 2014 May;16:7-17; 2. https://www.nature.com/articles/s12276-021-00602-1; 3. https://pubmed.ncbi.nlm.nih.gov/22710875/; 4. https://pubmed.ncbi.nlm.nih.gov/5441684/; 5. https://www.sciencedirect.com/science/article/pii/S1471492222000320; 6. https://link.springer.com/article/10.1007/s007750000144; 7. https://link.springer.com/chapter/10.1007/978-3-319-03777-6 1; 8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813354/; 9. https://rounduprisks.com/2016/04/09/glyphosate-and-mitochondrial-dysfunction/; 10. https://europepmc.org/article/MED/6205709 28.10.2024

Address the "Removes"

(A)

TOM70

SAM50

26

Viral remnants from SARS-CoV-2 as well as the spike protein have been shown to downregulate the mitochondria

Source: SARS-CoV-2-Research Aug 02, 2021 1 year ago

BREAKING! German Researchers Discover That SARS-CoV-2 Virus Proteins Manipulate Autophagy In Human Host Cells NEWS / CORONAVIRUS Bag f Share V Tweet in Share Share

BREAKING! German Researchers Discover That SARS-CoV-2 Virus Proteins Manipulate Autophagy In Human Host Cells

Source: SARS-CoV-2-Research Aug 02, 2021 1 year ago

In a new study by researchers from the Institute of Molecular Virology, Ulm University Medical Center-Germany, it was found that the SARS-CoV-2 coronavirus was able to manipulate autophagy in the human host.

A key and critical component of the innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition.

However, it has been found that certain viruses evolved sophisticated strategies to antagonize **autophagy** and even exploit it to promote their replication.

Source: Koepke L, Hirschenberger M, Hayn M, Kirchhoff F, Sparrer KM. Manipulation of autophagy by SARS-CoV-2 proteins. Autophagy. 2021 Sep;17(9):2659-2661, https://www.tandfonline.com/doi/full/10.1080/15548627.2021.1953847, https://www.thailandmedical.news/news/breaking-german-researchers-discover-that-sars-cov-2-virus-proteins-manipulate-autophagy-in-human-host-cells

B vitamins vital throughout the entire cycle ...

Vitamins and cofactors required along the electron transport chain according to comprehensive study

Source: Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr. 2019 Jun;38(3):982-995, https://pubmed.ncbi.nlm.nih.gov/30201141/

Summary of many of the nutrients mentioned in the previous study (Wesselink et al) ...

Source: Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr. 2019 Jun;38(3):982-995; Yamanaka, R. et al. (2016). Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Scientific reports, 6, 30027. https://doi.org/10.1038/srep30027

CoQ10 is critical to electron transport

Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: A randomized controlled trial

Yuk-Ling Dai^a, Ting-Hin Luk^a, Kai-Hang Yiu^a, Mei Wang^a, Pandora M.C. Yip^a, Stephen W.L. Lee^a, Sheung-Wai Li^c, Sidney Tam^d, Bonnie Fong^d, Chu-Pak Lau^a, Chung-Wah Siu^{a,b}, Hung-Fat Tse^{a,b,*}

Coenzyme Q₁₀ is a lipid-soluble component of the mitochondrial inner membrane that is critical to electron transport (in red) in the mitochondrial respiratory chain. Coenzyme Q₁₀ carries electrons from complexes I and II to complex III, thus participating in ATP production. C, cytochrome C; e-, electron; H⁺, proton; Q, coenzyme Q₁₀,

The Effect of Coenzyme Q₁₀ on Morbidity and Mortality in Chronic Heart Failure

Results From Q-SYMBIO: A Randomized Double-Blind Trial

Svend A. Mortensen, MD, DSc.* Franklin Rosenfeldt, MD,† Adarsh Kumar, MD, PHD,‡ Peter Dolliner, MD,§ Krzysztof J. Filipiak, MD, PHD, || Daniel Pella, MD, PHD, ¶ Urban Alehagen, MD, PHD, # Günter Steurer, MD, § Gian P. Littarru, MD,** for the Q-SYMBIO Study Investigators

ABSTRACT

OBJECTIVES This randomized controlled multicenter trial evaluated coenzyme Q10 (CoQ10) as adjunctive treatment in chronic heart failure (HF).

BACKGROUND CoQ10 is an essential cofactor for energy production and is also a powerful antioxidant. A low level of myocardial CoQ₁₀ is related to the severity of HF. Previous randomized controlled trials of CoQ₁₀ in HF were underpowered to address major clinical endpoints.

METHODS Patients with moderate to severe HF were randomly assigned in a 2-year prospective trial to either CoQ₁₀ 100 mg 3 times daily or placebo, in addition to standard therapy. The primary short-term endpoints at 16 weeks were changes in New York Heart Association (NYHA) functional classification, 6-min walk test, and levels of N-terminal pro-B type natriuretic peptide. The primary long-term endpoint at 2 years was composite major adverse cardiovascular events as determined by a time to first event analysis.

Inflammopharmacology (2019) 27:233-248 https://doi.org/10.1007/s10787-019-00572-x

Inflammopharmacology

REVIEW ARTICLE

The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials

Mohammad Vahid Jorat¹ · Reza Tabrizi² · Fariba Kolahdooz³ · Maryam Akbari² · Maryamalsadat Salami⁴ · Seyed Taghi Heydari⁵ · Zatollah Asemi⁶

Received: 2 November 2018 / Accepted: 1 February 2019 / Published online: 13 February 2019 © Springer Nature Switzerland AG 2019

Source: https://lpi.oregonstate.edu/mic/dietary-factors/coenzyme-Q10; https://www.sciencedirect.com/science/article/pii/S0005272816300573

Food sources of CoQ10; if a supplement: ubiquone or ubiquinol – does it matter?

The highest level of CoQ₁₀ is found in heart meat, and significant amounts are found in cold water fish, beef, pork, chicken and nuts. About 10 percent of daily CoQ₁₀ requirements can be obtained by eating 12 ounces of beef or pork heart, two pounds of sardines or mackerel, three pounds of beef or pork, or four pounds of peanuts. Milk, eggs, and most grains and vegetables contain small amounts of CoQ₁₀^{1,2}

The miracle of CoQ10

Ubiquinone or ubiquinol - does it matter? Ubiauinol is the reduced form of ubiquinone. Much has been made of the need to take the reduced form over recent years, but how much does it actually matter? Both ubiquinone and ubiquinol are lipid soluble due to the presence of the 10unit isoprene tail. They act as a redox pair where the conversion of one form to the other can be readily achieved depending on when and where their functions are needed in the body. For example, tissues that involve high aerobic activity contain more of the oxidised form (ubiquinone) than the reduced form. In blood circulation, around 95% of CoQ10 is present in the ubiquinol form. Exogenous CoQ10 is absorbed in the small intestine and enters the circulation via the lymphatic system. Before absorption, CoQ10 is converted to the reduced form ubiquinol by the enterocytes.

So, when taken orally, there is no great difference between the two: what counts is bioavailability. Q10 is hydrophobic, so its absorption in the GI tract is suboptimal. Fine

Source: 1. <u>https://www.westonaprice.org/health-topics/coenzyme-q10-for-healthy-hearts/#gsc.tab=0</u>; 2. Weber C. et al, The coenzyme Q₁₀ content of the average Danish diet. *Int J Vitam Nutr Res*. 1997: 67: 123-129; 3. Only Natural, Issue 32, Summer 2019, fully referenced (*please request from Gilian*) 28.10.2024

32

Glutathione our key intracellular antioxidant – crucial for the mitochondria

By evaluating levels of GSH and GSSG, as well as the GSH/GSSG ratio in blood, one can get a glimpse into the degree of mitochondrial dysfunction at a tissue level. An increased GSSG:GSH ratio is an indication of oxidative stress.

Glutathione,	oxidized	+	195 mg/l	15 - 90	[*>
Glutathione,	total		380 mg/l				
Glutathione,	free (GSH)		185 mg/l	150 - 460	[*]

Review

MDPI

"... recent research suggests that when glutathione is administered in liposomal or sublingual forms it may be made more bioavailable and favorably impact systemic glutathione levels.¹"

A Review of Dietary (Phyto)Nutrients for Glutathione Support

Deanna M. Minich ^{1,*}¹ and Benjamin I. Brown ²

¹ Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA

² BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK

* Correspondence: deannaminich@hotmail.com

Source: 1. Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients. 2019 Sep 3;11(9):2073; Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease-Implications for Therapy. J Clin Med. 2017 May 3;6(5):50.

Support of glutathione from food sources

Nutrients 2019, 11, 2073

12 of 20

Multi-component dietary interventions specifically designed to enhance glutathione status represent an exciting opportunity for clinical medicine and future research.

Nutrient and Foods	Recommended Dosage
Alpha lipoic-acid	300 mg 3× day; 200–600 mg/day [158]
Brassica vegetables	250 g/day
Curcumin	Doses up to 12 g/day safe; 1–2 g/day found to benefit antioxidant capacity; increased bioavailability with piperine [159]
Fruit and vegetable juices	300-400 mL/day
Glutathione (Liposomal)	500–1000 mg/day [43]
Glutathione (Oral)	500–1000 mg/day [41,42]
Glycine	100 mg/kg/day [63]
Green tea	4 cups/day
N-acetylcysteine	600–1200 mg/day in divided doses, but up to 6000 mg/day have been shown effective in studies [30,53,56,160]
Omega-3 fatty acids	4000 mg/day [76]
Salmon	150 g twice a week [80]
Selenium	247 µg/day of selenium enriched yeast; 100–200 µg/day. Anything above 400 µg/day watch for toxicity [103,160]
Vitamin C	500-2000 mg/day [87,88]
Vitamin E	100-400 IU/day [77,91]
Whey Protein	40 g/day [72]

Table 4. Summary of nutrients and foods for support of glutathione levels.

Source: Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients. 2019 Sep 3;11(9):2073;

... often forgotten: bioavailable copper

Energy pathway is copper dependent

 "Copper is essential for life processes like energy metabolism, reactive oxygen species detoxification, iron uptake, and signalling in eukaryotic organisms.

"Mitochondria gather copper for the assembly of cuproenzymes such as the respiratory complex IV, cytochrome c oxidase, and the antioxidant enzyme superoxide dismutase. In this regard, copper plays a role in mitochondrial function and signalling involving bioenergetics, dynamics and mitophagy, which affect cell fate by means of metabolic reprogramming" (2).

The proper assembly and functioning of the ETC [electron transport chain] is copper dependent.

* "Role of Copper on Mitochondrial Function and Metabolism" 2021 <u>https://www.frontiersin.org/articles/10.3389/fmolb.202</u> <u>1.711227/full</u>.

Bioavailable copper vital to numerous cellular processes

Figure 1. Major routes of intracellular copper trafficking. Copper (yellow spheres) enters the cell via the copper importer CTR1, located at the plasma membrane, and binds to thiol metabolites including glutathione (GSH). At least three different cytosolic copper chaperones (Atox1, Cox17, CCS) compete for Cu-GSH pool and sort Cu to specific destinations. Excess copper is stored as a Cu-metallothionein (MT) complex. Arrows represent the routes of intracellular copper trafficking. Alternative routes (direct transfer from CTR1 to copper chaperones) are indicated by dashed arrows. Cu-Atox1 transfers copper to the copper transporting ATPases (ATP7A and ATP7B) located in the membranes of trans-Golgi network (TGN) and secretory vesicles. ATP7B undergoes ATP-dependent conformational change from a Cu-bound state (E1) into a low affinity state (E2). Copper dissociates into lumen where it is incorporated into various copper-dependent enzymes including ceruloplasmin (CP), dopamine β -hydroxylase (DBH), peptidylglycine α -amidating monooxygenase (PAM), and other oxidoreductases.

"Copper is the major redox-active element in most biological systems. As a redox catalyst, copper is utilized in many essential cellular processes including energy production by the respiratory chain ... Inadequate copper supply results in numerous metabolic defects"

Caeruloplasmin the carrier of bioavailable copper into the cells: barely ever included in blood results

Biol Trace Elem Res (2008) 123:261–269 DOI 10.1007/s12011-008-8110-2

Ceruloplasmin, an Indicator of Copper Status

Miguel Arredondo • Mauricio González • Manuel Olivares • Fernando Pizarro • Magdalena Araya

Received: 13 December 2007 / Accepted: 24 January 2008 / Published online: 13 February 2008 © Humana Press Inc. 2008

Abstract For clinical purposes, the non-ceruloplasmin copper fraction is routinely derived on the basis that ceruloplasmin binds six Cu atoms. However, this approach is limited because the actual ceruloplasmin copper binding is unclear. We performed direct measurement of the total serum copper and ceruloplasmin in 790 healthy individuals. We used an immunoprecipitation technique to separate ceruloplasmin and determined Cu content. With these values, we calculated the Cu/ceruloplasmin (Cp) ratio and thus generated data to support or discard the theoretical calculation of the non-ceruloplasmin fraction. Average of serum Cu and Cp levels were $18.4\pm4.4 \,\mu$ mol/l and $390\pm100 \,$ mg/l, respectively. The immunoprecipitation procedure allowed us to calculate a Cu/Cp ratio of 5.8, respectively, which supports the methodology of calculation that assigns a mean of six copper atoms to each ceruloplasmin molecule. With these values, we calculated that, in apparently normal adults, the non-ceruloplasmin copper (NCPC) fraction is lower than 1.3 µmol/l of Cu. In this report, we examine the Cp/Cu ratio by using Cp immunoprecipitation procedure. Our in vitro and in vivo studies indicate that, as a mean, there are 5.8 atoms of Cu per Cp molecule and that <1.3 µmol/l of Cu would correspond to the NCPC.

Keywords Ceruloplasmin · Copper · Non-ceruloplasmin copper

Abbreviations

Cp Ceruloplasmin Cu copper NCPC non-ceruloplasmin copper

So often low when measured:

Ceruloplasmin 0.15 g/L 0.15 - 0.30

Source: Arredondo M, González M, Olivares M, Pizarro F, Araya M. Ceruloplasmin, an indicator of copper status. Biol Trace Elem Res. 2008 Summer;123(1-3):261-9.

The Cu-Cp-retinol link connects with blocks along the complexes, too: most mitochondrial proteins are Cu-dependent

Figure 1. Mitochondrial proteins containing Fe and Cu

Complexes I to IV of the electron transport chain require Fe-S clusters, heme moieties and Cu centers to function. Complex II functions both in electron transport and also in the tricarboxylic acid (TCA) cycle. Complexes I, III and IV co-purify (not depicted here). Mitochondrial aconitase (ACO2), another TCA cycle enzyme, contains an Fe-S cluster. Complex IV acquires Cu from a copper-ligand pool in the mitochondrial matrix through the action of cytochrome c oxidase assembly factors COX17, SCO1 and SCO2. Cu-Zn superoxide dismutase (SOD1) contains Cu provided by the Cu chaperone CCS. Mitochondrial ferritin (FTMT) can store Fe.

Source: Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab. 2013 Mar 5;17(3):319-28; see also https://therootcauseprotocol.com/

Retinol is the backbone of the multi-copper ferroxidase, caeruloplasmin

Health Topics

About

Home

THE WESTON A. PRICE FOUNDATION* Vise Traditions IN FOOD, FARMING AND THE HEALING ARTS

"Retinol is the backbone of the ferroxidase enzyme that is so critical for chaperoning iron, and retinol loads copper into ferroxidase. Interestingly, studies of anemia have illustrated vitamin A's importance.³⁵ Although

we measure anemia via hemoglobin, adding iron does not meaningfully restore normal hemoglobin levels—

but vitamin A does. In addition to high-quality cod liver oil, good sources of retinol include liver, pastured eggs and butter (preferably from raw milk)."1

The FASEB Journal

FASEB J. 2010 Feb; 24(2): 627-636. doi: 10.1096/fj.09-142281

PMCID: PMC2812036 PMID: 19812372

39

Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis

Rebeca Acin-Perez, Beatrice Hoyos, Feng Zhao, Valerie Vinogradov, Donald A. Fischman, Robert A. Harris, Michael Leitges,^{II} Nuttaporn Wongsiriroj,^{II} William S. Blaner,[#] Giovanni Manfredi,^{*} and Ulrich Hammerling[‡]

► Author information ► Article notes ► Copyright and License information Disclaimer

The physiology of two metabolites of vitamin A is understood in substantial detail: retinaldehyde functions as the universal chromophore in the vertebrate and invertebrate eye; retinoic acid regulates a set of vertebrate transcription factors, the retinoic acid receptor superfamily. The third member of this retinoid triumvirate is retinol. While functioning as the precursor of retinaldehyde and retinoic acid, a growing body of evidence suggests a far more fundamental role for retinol in signal transduction. Here we show that retinol is essential for the metabolic fitness of mitochondria. When cells were deprived of retinol, respiration and ATP synthesis defaulted to basal levels. They recovered to significantly higher energy output as soon as retinol was restored to physiological concentration, without the need for metabolic conversion to other retinoids.

Source: 1. https://www.westonaprice.org/health-topics/toxic-iron-and-ferroxidase-the-master-antioxidant/, 2. https://pubmed 28.10.2024 ncbi.nlm.nih.gov/3655940/; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812036/; www.rcp123.org

Natural sources of bioavailable copper

Copper - Almonds; Avocado; Beans; Broccoli; Buckwheat; Chocolate; Crab; Dried legumes; Lamb; Mushrooms; Oysters; Pecans; Perch; Pork; Prunes; Sunflower seeds; Wholegrain cereals; Water from copper pipes. Synergistic Nutrients -Vitamin B2, B6, B12, D, Amino acids; Ca, B9, Fe, Mn, Se, Zn. Ca and K increase Cu absorption and retention. Fe inhibits Cu uptake¹

NB Important to first build the caeruloplasmin carrier for bioavailable Cu with its retinol backbone³

<u>Home</u> > <u>Biological Trace Element Research</u> > Article

Ceruloplasmin, an Indicator of Copper Status

Published: 13 February 2008

Volume 123, pages 261–269, (2008) Cite this article

"Our in vitro and in vivo studies indicate that, as a mean, there are 5.8 atoms of Cu per Cp molecule"

Source: 1. : Osiecki H (2014) The Nutrient Bible 9th Edition Bio Concepts Publishing Australia; <u>http://www.alfiestrust.com/wp-content/uploads/2017/09/NutrientSourcesVitsMinsAGT.pdf</u>; 2. <u>https://www.hsph.harvard.edu/nutritionsource/copper/</u>28.10.2024

2

40

References on the importance of copper in mitochondrial function

Role of Copper on Mitochondrial Function and Metabolism, 2021 https://www.frontiersin.org/articles/10.3389/fmolb.2021.711227/full.

The mitochondrion: a central architect of copper homeostasis, 2018; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688007/

Selection

"Pulling the plug" on cellular copper: The role of mitochondria in copper export, 2008 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021392/

Filling the mitochondrial copper pool. J Biol Chem 2018, 293: 6, 1897-8; https://www.jbc.org/article/S0021-9258(20)39838-0/fulltext

The currents of life: The terminal electron-transfer complex of respiration. *Proceedings of the National Academy of Sciences* 1995, 92: 11949-51, December 1995; <u>https://www.pnas.org/doi/epdf/10.1073/pnas.92.26.11949</u>.

Iron and Copper in Mitochondrial Diseases. *Cell Metab* 2013, Mar 5;17(3):319-28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594794.

Copper Deficiency Decreases Complex IV but Not Complex I, II, III, or V in the Mitochondrial Respiratory Chain in Rat Heart. *J* Nutrition 2007, 137: 1, 14-18. <u>https://www.sciencedirect.com/science/article/pii/S0022316622090034</u>. Copper deficiency may be a leading cause of ischaemic heart disease. *Open Heart* 2018, 5(2):e000784. <u>https://pubmed.ncbi.nlm.nih.gov/30364437</u>.

Copper deficiency-induced anemia is caused by a mitochondrial metabolic reprograming in erythropoietic cells. *Metallomics* 2019, 11:282-290. <u>http://dx.doi.org/10.1039/C8MT00224J</u>.

Metabolic crossroads of iron and copper. Nutr Rev 2010;68(3):133-147. https://pubmed.ncbi.nlm.nih.gov/20384844.

Characterization of the transition-metal-binding properties of hepcidin. *Biochem J* 2010;427(2):289-296. <u>https://pubmed.ncbi.nlm.nih.gov/20113314</u>.

Role of copper in mitochondrial iron metabolism. *Blood* 1976, 48:77-85. <u>https://doi.org/10.1182/blood.V48.1.77.77</u>.

Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008, Jul;60(7):421-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864105.

Kataoka M, Tavassoli M. **Ceruloplasmin receptors in liver cell suspensions are limited to the endothelium.** Exp Cell Res. 1984 Nov;155(1):232-40; <u>https://pubmed.ncbi.nlm.nih.gov/6092118/</u>

Without magnesium, no mitochondrial ATP can be generated

Vital for activating the terminal complex of the electron transport chain: without it, no mitochondrial ATP

Figure 1: Regulation of mitochondrial functions by Mg^{2+} . Mitochondrial Mg^{2+} activates (----->) three dehydrogenases in the mitochondrial matrix: pyruvate dehydrogenase (conversion of mitochondrial pyruvate to acetyl coenzyme A), isocitrate dehydrogenase (conversion of isocitrate to 2oxoglutarate), and 2-oxoglutarate dehydrogenase (conversion of 2-oxoglutarate to succinyl coenzyme A). In addition, mitochondrial Mg^{2+} activates F_0/F_1 -ATP synthase, which is the terminal complex of mitochondrial oxidative phosphorylation (OXPHOS). This regulatory activity contributes to mitochondrial energy metabolism.

Source: 1. Pilchova I et al. The Involvement of Mg²⁺ in Regulation of Cellular and Mitochondrial Functions. Oxid Med Cell Longev. 2017;2017:6797460. ; R. Yamanaka, S. Tabata, Y. Shindo et al., "Mitochondrial Mg²⁺ homeostasis decides cellular energy metabolism and vulnerability to stress," *Scientific Reports*, vol. 6, article 30027, 2016 28.10.2024

0.2024 42

Docosahexaenoic acid appears to have an especially important role in the ETC

controls, in the group that received both light exposure and melatonin administration.

THE ROLES OF DHA AND CHOLESTEROL SULFATE IN INDUCING ELECTRON Go to: 🖂 FLOW

Lipid rafts are specialized areas of the plasma membrane that are rich in cholesterol and sphingolipids and that serve as signaling platforms by clustering proteins [93] The omega-3 fatty acid DHA plays an

important role in the r backbone and six cisnaturally in organisms with the visual system converts photons to el possesses quantum me UV frequency range a stream through a proc

DHA ... captures light in the visible to UV frequency range and uses its energy to excite pi electrons and ultimately release them in a continual stream through a process termed "electron tunneling,"

22-carbon id occurring ty associated his process ted that DHA n the visible to a continual

The pineal gland normany contains substantial amounts of Drive, 175 m a rat model, denciency in alphalinolenic acid (a precursor to DHA) led to compensatory higher levels of omega-6 fatty acids in the pineal gland. [224] Furthermore, a decrease in melatonin release in response to adenosine by pinealocytes was observed in rats fed an omega-3 fatty acid-deficient diet.[62] Finally, dietary supplements in DHA increase the excretion of melatonin sulfate in the urine, indicating that synthesis of melatonin depends on adequate DHA.[47] These effects can plausibly be explained by the idea that DHA is essential for light-catalyzed sulfate synthesis by the pineal gland. We propose here, for the first time, that the pineal gland utilizes its NOS isoforms to produce sunlight-catalyzed sulfate from reduced sulfur sources

Source: Wendy A. Morley and Stephanie Seneff¹, Diminished brain resilience syndrome: A modern day neurological pathology of increased susceptibility to mild brain trauma, concussion, and downstream neurodegeneration, Surg Neurol Int. 2014; 5: 97; Crawford MA et al. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins Leukot Essent Fatty Acids. 2013;88:5–13

- What pathways may have become compromised?
- ATP Profile
- Mitochondrial Health Index
- Lactate/Pyruvate Index

Pyruvate is the product of glycolysis, and can either be transformed into lactate or transported into the mitochondria

Lactate/Pyruvate Plus test

Glucose in cells is converted to pyruvate. It can then either be transported into the mitochondria via the mitochondrial pyruvate carrier (MPC) or "turned back" and converted into lactate. Ideally most of it gets into the mitochondria. Here, you can see that the MPC is blocked, so lactate will build up in the cytosol.

Figure 1. Schematic diagram of a mitochondrion illustrating the cellular components associated with pyruvate transport and metabolism.

Lactate/pyruvate ratio Plus: shows what nutrients are being used as fuel for the mitochondria (2/2)

The higher the value of lactate compared to pyruvate, the more glycolysis is occurring. A higher level of pyruvate compared to lactate is a prerequisite for successful transfer of substrates in the mitochondria for oxidative phosphorylation.

The normal range for immune cells usually ranges from 1.0 - 0.7. Examples are calculated below

* 251

123

16

70

LDH

CK

GAMMA GT

TOTAL PROTEIN

Ratio	Basal metabolic rate							
>2.0	The cell is prima	The cell is primarily using carbohydrates and preferentially converting them to lactate.						
>1.2-2.0	The cell is prima	The cell is primarily using carbohydrates and partially converting them to lactate.						
1-1.2	The cell is primarily using carbohydrates and transporting them into the mitochondria.).	
0.8 - 1.0	The cell is using being transport	g carbohydrat ed into the m	tes, fatty acids iitochondria.	and amino acids.	. The ca	rbohydrates are	primarily	
<0.8	The cell is prima	arily using fat	ty acids as fuel.					
BILIRUBIN ALKALINE PHO	OSPHATASE	10 55		u I	umol/L U/L	0 - 20 40 - 129	This	
ASPARTATE TRANSFERASE ALANINE TRANSFERASE		23 15		1	U/L U/L	0 - 37 10 - 50	refl	

This may well be reflected in high LDH

135 - 225 ◀

38 - 204

10 - 71

63 - 83

IU/L

IU/L

IU/L

q/L

Source: <u>https://www.agilent.com/cs/library/usermanuals/public/103344-400.pdf;</u> Prof. Dr. rer. nat. Brigitte König, MMD Labor; mitochondrial research by Martin D. Brand and others 28.10.2024

46

Lactate/Pyruvate Plus

Lactate/Pyruvate Index: shows what macronutrients are being used as fuel for the mitochondria (2/2)

Cell type:

Peripheral blood mononuclear cells (PBMC)

Lactate/Pyruvate Index Plus

Lactate/Pyruvate index PLUS

Test	Result	Interpretation	
Lactate/Pyruvate in dormant cells	1.61	Your immune cells are primarily metabolising carbohydrates and partially (30%) converting them	
Lactate/Pyruvate in activated cells	2.43	to lactate The cells are primarily using carbohydrates and converting around 80% of them to lactat <mark>e</mark>	This result: Under pressure, the fuel is

The normal range for immune cells usually ranges from 1.0 – 0.7. Examples are calculated below

Ratio	Basal metabolic rate
>2.0	The cell is primarily using carbohydrates and preferentially converting them to lactate.
>1.2-2.0	The cell is primarily using carbohydrates and partially converting them to lactate.
1-1.2	The cell is primarily using carbohydrates and transporting them into the mitochondria.
0.8 - 1.0	The cell is using carbohydrates, fatty acids and amino acids. The carbohydrates are primarily being transported into the mitochondria.
<0.8	The cell is primarily using fatty acids as fuel.

Under pressure, the fuel is largely not going into the mitochondria, it is being recycled into lactate. The buildup can be very painful (fibromyalgia-type symptoms). "MCTs don't rely on transport proteins— instead, they're absorbed directly from the intestinal lumen into the portal vein. Then they're quickly transported to the liver, where they're metabolized via beta--oxidation to produce energy and ketones.

MCTs ability to more rapidly metabolize than long-chain fats is thought to contribute to greater energy expenditure, less deposition in adipose tissue, and more efficient ketone production. This also explains why MCTs are "ketogenic." Although all MCTs are metabolized in a similar way, C8 has an even greater advantage than other MCTs. C8 can cross the mitochondrial membrane without carnitine-dependent transport, allowing for even more rapid beta-oxidation and ketone production.

A study published in April 2019 in the journal Frontiers in Nutrition measured the change in plasma ketones after an eight-hour feeding trial with different types of MCTs. Based on plasma levels of acetoacetate, beta-hydroxybutyrate, and total ketones, the study found that C8 was about three times more ketogenic than C10 and about six times more ketogenic than C12."

Source: <u>https://www.emersonecologics.com/blog/post/c8-mct-oil-quick-source-of-energy-how-to-use-C8-MCT-oil</u>; St-Pierre V et al. Plasma Ketone and Medium Chain Fatty Acid Response in Humans Consuming Different Medium Chain Triglycerides During a Metabolic Study Day. Front Nutr. 2019 Apr 16;6:46; <u>https://www.mdpi.com/1422-0067/24/17/13090</u>

Butyrate also beneficially impacts mitochondrial function

"[Butyrate] BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant."

ATP-linked respiration (**a**), maximal respiratory capacity (**c**), and reserve capacity (**d**) were enhanced over and above the control values for the AD-A LCLs with BT exposure, particularly for 0.1 and 1.0 mM BT concentrations. The bars adjacent to the data lines represent overall significant differences. The color of the stars and bars represents the specific comparisons. Green represents the difference between AD-A and control LCLs. Orange represents the difference between AD-N and control LCLs. Blue represents the difference between the AD-N and AD-A LCLs. Statistical significance levels: $*p \le 0.05$, $**p \le 0.01$, $***p \le 0.001$, $****p \le 0.0001$

Source: Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, Frye RE. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry. 2018 Feb 2;8(1):42.

Carnitine acts as a carrier for fatty acids across the mitochondrial membrane for b-oxidation, essential for converting fat into energy

Figure 2 Carnitine is actively transported via OCTN2 into the cytosol to participate in the shuttling of activated long chain fatty acids into the mitochondria where β -oxidation takes place. Carnitine also regulates the Coenzyme A (CoA)/acylCoA ratio within the mitochondria, modulation of which reduces accumulation of toxic acyl-CoA compounds and maintains energy production.

1

L-carnitine is one of the key nutrients for proper mitochondrial function and is notable for its role in fatty acid oxidation. L-carnitine also plays a major part in protecting cellular membranes, preventing fatty acid accumulation, modulating ketogenesis and glucogenesis and in the elimination of toxic metabolites.

"Meat, poultry, fish, and dairy foods, and, recently, dietary supplements supply 75% of carnitine [13]. The main animal source of carnitine is red meat (which contains up to $80 \mu g/100 g$); it is present in moderate amounts in dairy products, and at a low-tozero level in vegetables." ^{3, 4}

50

Source: 1. Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond). 2010 Apr 16;7:30; 2. Virmani MA, Cirulli M. The Role of I-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int J Mol Sci. 2022 Feb 28;23(5):2717; 3. Durazzo A et al. The Nutraceutical Value of Carnitine and Its Use in Dietary Supplements. Molecules. 2020 May 1;25(9):2127.; 4. Pormsila, W.; Krähenbühl, S.; Hauser, P.C. Determination of carnitine in food and food supplements by capillary electrophoresis with contactless conductivity detection. Electrophoresis 2010, 31, 2186–2191; : <u>https://www.mdpi.com/1422-0067/23/5/2717/htm</u>; Osiecki H (2014) The Nutrient Bible 9th Edition Bio Concepts Publishing Australia; http://www.alfiestrust.com/wp-content/uploads/2017/09/NutrientSourcesVitsMinsAGT.pdf 28.10.2024

Mitochondrial energy production is dependent on the correct mitochondrial membrane potential

"Mitochondria have a membrane potential of 150 -200 mV across a membrane that is 5 - 6 nm thick, giving a field strength of 30×106 V/m, equivalent to a bolt of lightning."

If the normal electrical gradient is reversed, exchange across the cell membrane will be disrupted

Imagine the damage EMFs can create ...

Source: Jaime Santo-Domingo and Nicolas Demaurex (2012). The renaissance of mitochondrial pH. J Gen Physiol 2012 139:415-423; Molecular Cell Biology. 4th edition. Lodish H, Berk A, Zipursky SL, et al. New York: W. H. Freeman; 2000.

EMF prevention and support essential (1/2)

Wi-fi disrupts the voltage-gated calcium channels of our cells, leading to the internal mitochondrial production of highly corrosive peroxynitrite, which in turn causes brain fog, memory decline and neurodegeneration.

Internal Protection.

Essential Protective Measures

Prevention

Eliminating wi-fi routers from indoor spaces is paramount. However, if complete removal isn't feasible, switching off the wi-fi router at night provides a 30% reduction in stressors. Achieving optimal healing often necessitates complete elimination. Eliminate cordless phones

a. Special tinctures are available composed of e.g. Propolis, Rosemary and Gingko: internal cellular shielding against lowfrequency wavelength ranges

 b. Natural vitamin C a potent antioxidant resource, fortifying our body's natural resilience against oxidative damage caused by wi-fi's impact.

EMF prevention and support essential (2/2)

1. External protection:

- a. There are creams you can apply that provide a degree of protection against EMFs
- b. Specialised protective measures, such as a custom-made "Sleep Sanctuary" (silver-coated cloth that works like a Faraday cage) and wi-fi-repelling/protective clothing
- c. Even special soaps

See the AONM (aonm.org) webpage for more details

HOME - ORDER ONLINE LONG COVID - ARMINLABS - MITOCHONDRIAL TESTING - MAINTRAC - PANS/PANDAS -

FOOD SENSITIVITY - KPU TESTING - WEBINARS - EVENTS - PRACTITIONERS - CONTACT Q

Mitochondrial Magic – Tips for revitalising your mitochondrial health

Dr Sarah Myhill - Mitochondria Dysfunction and Chronic Disease

DOWNLOAD PDF

Prof Brigitte Koening – Advanced Mitochondrial Testing and Potential Therapies

In Part 2 we will cover other supplementary markers and potential therapeutic support

Further supplementary biomarkers:

Ratio of mtDNA to nDNA (mtDNA:nDNA) PGC-1α for mitobiogenesis Mitochondrial stress test Nrf-2 as a marker for mitochondrial stress

Thanks very much for your attention! Q&A gilian@aonm.org

Copyright AONM, All rights reserved