

Mitochondrial Testing

Academy of Nutritional Medicine with Gilian Crowther, Director of Research, AONM 30th October 2024

https://aonm.org/mitochondrial-testing/

Copyright MMD/AONM, All rights reserved

Mitochondrial testing with AONM/MMD

- 1. Brief introduction to the mitochondria
- 2. <u>ATP Profile</u>: Total ATP, Mitochondrial ATP, Glycolytic ATP, Reserve Capacity
- 3. Mitochondrial Health Index:

Basal respiration rate, mitochondrial ATP turnover, proton leak, maximum respiration rate, reserve capacity, non-mitochondrial rate, calculation of the overall Mitochondrial Health Index

4. Supplementary biomarkers:

Ratio of mtDNA to nDNA (mtDNA:nDNA) PGC-1α Nrf-2 Mitochondrial 4977 deletion mutant (mt4977del) Lactate/pyruvate ratio Mitochondrial Fuel Pathways OxPhos

ATP Profile

XXX

Max-Mustermann Straße 5 xxx Berlin

MMD GmbH & Co. KG Breiter Weg 10a 39104 Magdeburg Prof. Dr. Brigitte König CEO/ Scientific Director Prof. Dr. Gerhard Jorch Medical Director Patient	Tel. office: Tel. laboratory: Fax: E-Mail: Web: AW	+49 391 535 37 97 +49 391 611 72 09 +49 391 535 38 45 info@mmd-web.de www.mmd-web.de Date of birth Entry on	01.01.1990 23.07.2021	
Order No.:				
Date of sample Sample type Results status	22.07.2021 CPDA vacutainer Final report	Validated by Cell type Results status on	Prof. Dr. Brigitte König PBMC 23.07.2021	
ATP profile				
Test	Result	Unit	Reference range	Result [%]
Total ATP	0.8	fmol/cell	•	
Mitochondrial ATP capacity	0.4	fmol/cell	•	50

Glycolytic ATP capacity	0.5	fmol/cell			•			63
Reserve ATP capacity	0.10	fmol/cell		<u>♦</u>				13
Reference range total ATP								
fmol/cell <	0.8 0.8 - 1.0	1.0 - 1.2	1.2 - 1.4	1.4 - 1.6	1.6 - 2.0	2.0 - 2.5	2.5 - 3.0	3.0 - 5.0
Reference range mitochondria	ATP capacity							
fmol/cell <	×0.8 0.8 - 1.0	1.0 - 1.2	1.2 - 1.4	>1.4				
Reference range glycolytic ATP	P capacity							
fmol/cell <	0.8 0.8 - 1.0	1.0 - 1.2	1.2 - 1.4	>1.4				

Reference range reserve ATP capacity fmol/cell

Total ATP

Total ATP

This is the quantity of ATP that the cells produce at rest via both mitochondrial and non-mitochondrial pathways. Total ATP is all the adenosine triphosphate (our cells' energy currency) available to the cell. This makes it possible to assess the relative performance of mitochondrial respiration (mitochondrial ATP capacity) versus anaerobic glycolysis (glycolytic ATP capacity).

Mitochondrial and glycolytic ATP capacity

Mitochondrial ATP capacity measures the capacity to synthesise adenosine triphosphate (ATP) in the patient's mitochondria in a defined basal state. This is calculated by determining the absolute ATP production that is inhibited by addition of the ATP synthase inhibitor oligomycin (see figure above).

Glycolytic ATP capacity	0.5	fmol/cell		♦		63
Reference range glycoly	tic ATP capacity	/				
fmol/cell	<0.8	0.8 - 1.0	1.0 - 1.2	1.2 - 1.4	>1.4	

ATP can also be produced in the cytosol, outside the mitochondria (though still inside the cell). This parameter measures the glycolytic capacity for ATP production: the maximum quantity of ATP that the cells are able to produce at rest via non-mitochondrial pathways, i.e. anaerobic glycolysis. This makes it possible to assess the relative performance of anaerobic glycolysis versus mitochondrial respiration. It is important to have a high glycolytic capacity in the cells so that sufficient precursors for the Krebs Cycle can be made to then be cycled into the ETC, and also so that the cytosolic production of ATP (glycolysis) can be upregulated if needed, when immune cells need to address pathogens, etc. 5

Reserve ATP capacity

ATP profile									
Test		Result	Unit	Ret	ference rang	e		Re	sult [%]
Reserve ATP capacity		0.10	fmol/cell		•				13
Reference range reserve	e ATP capacity								
fmol/cell	<0.2	0.2 - 0.3	0.3 - 0.4	0.4 - 0.6	0.6 - 0.9	0.9 - 1.0	1.0 - 1.2	1.2 - 1.5	>1.5

ATP synthesis is generally presumed to be coupled almost entirely to two metabolic processes: oxidative phosphorylation and glycolysis. There is however another essential metabolic process that interconverts the three adenine nucleotides (ATP, ADP and AMP) using adenylate kinase according to metabolic needs. Adenylate kinase catalyses a reversible reaction: 2 ADP > ATP + AMP. This is a vital factor in regulating the energy charge in cells, providing an open system able to accept, store and supply energy to cells as needed. The marker "Reserve ATP capacity" indicates how dynamically the cell is able to perform this catalytic interconversion.

Here, the reserve ATP capacity is 13 %/ 0.10 fmol/ cell. The patient's result is in the very low range. The optimal would be between 0.6 to 0.9 fmol/cell. 13 % means that the cell is unable to perform dynamic catalytic interconversion between the three adenine nucleotides (ATP, ADP and AMP) according to metabolic needs.

6

Impaired glycolytic ATP capacity: Could insulin resistance be an issue? In 95% of the US population, Dr. Pizzorno said recently*

Insulin plays a significant role in this array of glycolysis regulation. In the short term, **insulin**, **through insulin signaling pathways controls glucose** entry and regulates the levels of F-2,6-P₂, a key regulator of glycolysis.

E ScienceDirect.com https://www.sciencedirect.com > article > abs > pii

Regulation of glycolysis-role of insulin - ScienceDirect.com

Scheme outlining insulin signaling and the regulation of glycolysis. In various tissues, insulin controls distinct components of glycolysis. IR, insulin receptor; IRS, insulin receptor substrate; PI3K, phosphotidylinositol-3-kinase; PIP2, phosphotidylinositol-4,5-phosphate; PIP3, phosphotidylinositol-3,4,5-phosphate; GLUT4, glucose transport 4; and PDK, phosphotidylinositol-dependant kinase.

Download: Download full-size image

Figure 1. Major steps of glycolysis. Glycolysis is the pathway for the generation of pyruvate/lactate from glucose. Depending on cell types in which glycolysis occurs, glucose uptake is mediated mainly by glucose transporter 2 (GLUT2) or GLUT4. Following glucose uptake, rates of glycolysis are determined at steps of glucose phosphorylation, which is catalyzed by hexokinase II or hexokinase IV (glucokinase, GK), and the generation of fructose-1,6-bisphosphate, which is catalyzed by 6-phosphofructo-1-kinase (6PFK1). The latter is activated by fructose-2,6-bisphosphate (F2,6P₂), whose production is controlled by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PFK2/FBPase2). DHAP, dihydroxyacetone phosphate; TCA, tricarboxylic acid cycle.

Source: 1. Wu C, Khan SA, Lange AJ. Regulation of glycolysis-role of insulin. Exp Gerontol. 2005 Nov;40(11):894-9;
Hers HG. Mechanisms of blood glucose homeostasis. J Inherit Metab Dis. 1990;13(4):395-410; Nutrition Medicine Institute (NMI) Summit, London,

"Mitochondrial Nutrition for Energy, the Brain, and Healthy Ageing"< Oct. 11/12, 2024

Impaired glycolytic ATP capacity: Cofactors may be lacking to get pyruvic acid into the mitochondria

Source: ©Genova Diagnostics • A.L. Peace-Brewer, PhD, D(ABMLI), Lab Director • CLIA Lic. #34D0655571 • Medicare Lic #34-8475 (with permission)

If mitochondrial ATP capacity on the ATP profile is stronger: fatty acids are getting in

There are however mitochondrial fatty acid oxidation disorders (FAODs) (inherited metabolic diseases) that affect the transport of fatty acids into mitochondria:

• Carnitine transporter defect

- Carnitine-acylcarnitine translocase (CACT) deficiency
- LCHAD deficiency
- Etc.

Source: ©Genova Diagnostics • A.L. Peace-Brewer, PhD, D(ABMLI), Lab Director • CLIA Lic. #34D0655571 • Medicare Lic #34-8475 (with permission)

Mitochondrial testing with AONM/MMD

- 1. Brief introduction to the mitochondria
- 2. ATP Profile: Total ATP, Mitochondrial ATP, Glycolytic ATP, Reserve Capacity
- 3. Mitochondrial Health Index:

Basal respiration rate, mitochondrial ATP turnover, proton leak, maximum respiration rate, reserve capacity, non-mitochondrial rate, calculation of the overall Mitochondrial Health Index

4. Supplementary biomarkers (next time!):

Ratio of mtDNA to nDNA (mtDNA:nDNA)PGC-1αNrf-2Mitochondrial 4977 deletion mutant (mt4977del)Lactate/pyruvate ratioPhase 2:Number of mitochondriaIntact mitochondria versus Non-intact mitochondria

Mitochondrial Health Index: top page

Requisition: Mitochondrial Health Index / PBMCs

Sample type: Blood in CPDA vials

Summary

	Patient's value	Target value (optimal)
Mitochondrial Health Index (MHI)	0.00	>2.5
Mitochondrial Bioenergetics		
Coupling efficiency, %	86	90-95
Reserve respiration capacity, %	0	>400
Cellular oxygen consumption profile		
Non-mitochondrial respiration as a share of total respiration, %	32	<10
Proton leak as a share of total respiration, %	10	5-10
Share of respiration used for mitochondrial ATP generation, %	58	>90
ATP turnover rate (mitochondrial oxygen utilisation	n)	
ATP base turnover, %	100	<20
ATP reserve, %	0	>80
Basal oxygen consumption rate in pmol oxygen/min	28.75	
Potential maximum oxygen consumption rate in pmol oxygen/min	22	>500
Cellular energy phenotype		
At rest	Resting	Resting
On energy demand	Resting	Energetic/Aerobic
Metabolic potential, mitochondrial percentage	84	>350
Metabolic potential, glycolysis percentage	151	>350
Oxygen consumption/glycolysis on energy demand	Strong preference for anaerobic glycolysis	

Optimal	Slightly high / low	Moderately high/low	Very high/low	Extremely high/low

04.11.24 11

Summary relating to mitochondrial dysfunction: selected markers

	None	SI	ight	Moderate	Considerable	Extreme	
Mitochondrial dysfunction						\checkmark	
Cellular imbalance					٨.		
Indications of							
Increased formation of oxygen radicals in the cell		\checkmark	No Yes	Insufficient AT formation on o demand	P energy	\checkmark	No Yes
Increased formation of oxygen radicals in the mitochondria		\checkmark	No Yes				No Yes
Restricted function of the electron transport chain in the mitochondria		\checkmark	No Yes				
Limited number of functionally intact mitochondria		\checkmark	No Yes	Acute inflamm active chronic inflammation/ autoimmune o	nation, / disease	V	No Yes

Further diagnostic opportunities for personalised therapy

Investigate minerals and further mitochondrial cofactors

Investigate mitochondrial mass (mtDNA:nDNA/number of mitochondria) and analyse mitochondrial mutations that influence ATP generation (e.g., the common deletion mt4977bp).

- Upregulated ROS in the cells
- Compromised function of the electron transport chain
- Limited no. of functionally intact mitochondria
- Insufficient ATP on demand

Comparison of various tests

Patient	X000000
Date of birth	19.07.1941
Sample taken	15.06.2021
Receipt of sample	16.06.2021
Test completed	16.06.2021
Final result	16.06.2021
Validated by	Prof. Dr. Brigitte König
Medical Director	Prof. Dr. Gerhard Jorch

Comparison with previous values

[
				Current value	
		28.10.2020	19.05.2021	16.06.2021	Target value (optimal)
Mitochondrial Health Index (Mi	HI)	1.87	1.54	1.90	>2.5
	Mito	chondrial bioen	ergetics		
Coupling efficiency, %		94.76	84.62	93.80	100
Reserve respiration capacity, %	_	242.93	291.35	468.73	>400
	Cellu	lar oxygen cons	umption profi	le	
Non-mitochondrial respiration	as a				
share of total respiration, %		33.66	32.09	35.32	<10
Proton leak as a share of total respiration, %		3.76	10.45	4.96	
Share of respiration for					
mitochondrial ATP generation,	%	62.58	57.46	59.72	>90
	ATP	turnover rate (m	itochondrial o	oxygen utilisation)
ATP base turnover, %		27.35	21.62	16.30	<20
ATP reserve, %		72.65	78.38	83.70	>80
Maximum possible oxygen				100.05	
consumption rate, pmol oxygen	/min	90.78	123.10	180.06	>300
	Cellu	lar energy phen	otype		
At rest		Resting	Resting	Resting	Resting
On energy demand		Energetic	aerobic	aerobic	Energetic/aerobic
Metabolic potential, % -					
Mitochondria		262.44	297.81	401.74	>350
Metabolic potential, % - glycoly	sis	312.43	252.29	334.84	>350
			Slight		
Oxygen consumption/glycolysis	s ratio	Slight preference	preference for	Slight preference	
on energy demand		for anaerobic	the	for the	
		glycolysis	mitochondria	mitochondria	

Maximum possible oxygen consumption rate has doubled; many markers are showing improvement

Mitochondrial testing with AONM/MMD

1. ATP Profile: Total ATP, Mitochondrial ATP, Glycolytic ATP, Reserve Capacity

2. Mitochondrial Health Index:

Basal respiration rate, mitochondrial ATP turnover, proton leak, maximum respiration rate, reserve capacity, non-mitochondrial rate, calculation of the overall Mitochondrial Health Index

3. <u>Supplementary biomarkers:</u>

Ratio of mtDNA to nDNA (mtDNA:nDNA) PGC-1α Nrf-2 Mitochondrial 4977 deletion mutant (mt4977del) Lactate/pyruvate ratio

Mitochondria have their own DNA

mtDNA:nDNA

Source: MMD GmbH & Co KG Author Prof. Dr. Brigitte König; Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci. 2018 Dec 6;12:306; https://en.wikipedia.org/wiki/Mitochondrial_DNA: Images free to use under Commons License 04.11.24

Ratio of mitochondrial DNA to nuclear DNA shows the mitochondrial mass in the cell

DNA tests:

Example 1:

Ratio of mitochondrial DNA to nuclear DNA

04.11.24 16

lower end of the reference range.

Nuclear DNA remains stable at a unit of 1, but mitochondrial DNA will increase proportionally to the number of mitochondria in the cell.

It is important to note though that this does not mean that the mitochondria being detected are healthy/intact.

300 - 500 100 - 150 150 - 200 200 - 250 250-300 The ratio of mitochondrial DNA to nuclear DNA is normal, though towards the

mtDNA:nDNA

mtDNA:nDNA – numbers pathologically high/low

						mtDNA:nDNA]
Example 2:							1
Ratio mtDNA:nD	NA	1	039				
Number of mitoch	ondrial DNA copie	es per 1 copy of nu	ıclear DNA				
Example 3:							
ratio mtDNA:nD	NA		115		•		
Number of mitoc	hondrial DNA co	pies per 1 copy o	f nuclear DNA				
Reference ran	ge ratio mtDN/	A:nDNA					
0 - 100	100-150	150-200	200-250	250-300	300 - 500	>500	

Too high (see example 2):

The cell is trying to counteract the lack of energy by increasing the number of mitochondria.

Too low (see example 3):

The cell is unable to counteract the lack of energy by increasing the number of mitochondria.

PGC-1-alpha is central for the induction of new mitochondria

- PGC-1α regulates mitochondrial biogenesis but also has effects on mitochondrial functions beyond biogenesis.
- Mitochondrial quality control mechanisms, including fission, fusion, and mitophagy, are regulated by PGC-1α.
- PGC-1α-mediated regulation of mitochondrial quality may affect age-related mitochondrial dysfunction and insulin sensitivity.

Source: 1. Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1α-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Front Cell Dev Biol. 2022 May 27;10:871357; 2. Halling JF, Pilegaard H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab. 2020 Sep;45(9):927-936. 04.11.24

2

The test for PGC-1-alpha measures its relative expression

PG	C_1_:	alni	ha
	C-T-0	aipi	

Unit	Result
Relative expression (to GAPDH)	0.000953
	Unit Relative expression (to GAPDH)

GAPDH: glyceraldehyde-3-phosphate dehydrogenase

Interpretation: "Basic values of the peripheral blood leucocytes"

PGC-1-alpha expression is barely detectable. This indicates extremely low/absent new mitochondrial formation.

If this is the case, and mtDNA:nDNA is low too, then initiatives should be taken to increase PGC-1-alpha (list of inducers available)

The "common deletion" mDNA⁴⁹⁷⁷ is caused by oxidative stress

Source: MMD GmbH & Co KG Author Prof. Dr. Brigitte König

This can be measured, and shows the degree of oxidative stress the mitochondria are suffering ...

Before deletion Wildtype mtDNA = 16569 base pairs

After deletion mtDNA = 11562 base pairs

... as well as any damage to mitochondrial DNA

The mitochondrial deletion mutant mt4977bp is noticeably enhanced. This indicates oxidative stress and damage to mitochondrial DNA.

Among mtDNA deletions, one of the most vital that causes huge destruction of almost one third in length of the mitochondrial genome is the 4977-bp mtDNA deletion (mDNA⁴⁹⁷⁷). This is one of the best-described large-scale mtDNA deletions, and has been found to accumulate in numerous disorders (literature available upon request). It is often known as a "common deletion" due to the frequency with which it has been reported. The deleted region encodes seven polypeptides essential for the OXPHOS pathway: four for Complex I, one for Complex IV, and two for Complex V. **This can cause complete failure of ATP production in the mitochondria affected.**

One initiative is to check Nrf-2: our cells' master antioxidant regulator

"Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) is a critical transcription factor that regulates the expression of over 1000 genes in the cell under normal and stressed conditions. Nrf2 has been historically considered as a crucial regulator of antioxidant defense to protect against various insult-induced organ damage"

Problem if it is undetectable and you have evident oxidative stress

		RESULTS	Nrf-2
Sample type: Blood in CPDA vials	Requisition: RNA		
		Summary	Ľ
RNA profile			
Test	Unit	Result	-
Nrf-2	Relative expression (to GAPDH)	Not detectable	
GAPDH: glyceraldebyde-3-nhosn	hate dehvdrogenase		

Nrf-2 expression is not detectable, indicating extremely low/absent defence against reactive oxygen metabolites in the cell.

Nrf-2

NRF-2, nuclear factor erythroid 2-related factor 2, is the master regulator of our antioxidant system to protect cells from reactive oxygen species. Nrf-2 activates Phase II detoxification – particularly glutathione-S-transferase and other antioxidant enzymes, including SOD-2, catalase and glutathione peroxidase. It is crucial to have adequate levels of this in the mitochondria.

This test of mitochondrial oxidation levels can also be done as a fingerprick test

Simple, can be done as a follow-up, or to check on your physical workup regime: are you over-training?

Pyruvate is the pathway into the mitochondria, as you will remember

Source: ©Genova Diagnostics • A.L. Peace-Brewer, PhD, D(ABMLI), Lab Director • CLIA Lic. #34D0655571 • Medicare Lic #34-8475 (with permission)

Lactate/Pyruvate Index: shows what nutrients are being used as fuel for the mitochondria

Lactate/Pyruvate Plus

The higher the value of lactate compared to pyruvate, the more glycolysis is occurring. A higher level of pyruvate compared to lactate is a prerequisite for successful transfer of substrates in the mitochondria for oxidative phosphorylation.

The normal range for immune cells usually ranges from 1.0 - 0.7. Examples are calculated below

Ratio	Basal metabolic rate
>2.0	The cell is primarily using carbohydrates and preferentially converting them to lactate.
>1.2-2.0	The cell is primarily using carbohydrates and partially converting them to lactate.
1-1.2	The cell is primarily using carbohydrates and transporting them into the mitochondria.
0.8-1.0	The cell is using carbohydrates, fatty acids and amino acids. The carbohydrates are primarily being transported into the mitochondria.
<0.8	The cell is primarily using fatty acids as fuel.

Source: <u>https://www.agilent.com/cs/library/usermanuals/public/103344-400.pdf;</u> Prof. Dr. rer. nat. Brigitte König, MMD Labor; *mitochondrial research by Martin D. Brand and others*

Lactate/Pyruvate Index: shows what macronutrients are being used as fuel for the mitochondria

Cell type:

Peripheral blood mononuclear cells (PBMC)

Lactate/Pyruvate Plus

Lactate/Pyruvate ratio PLUS

Test	Result	Interpretation	
Lactate/Pyruvate in dormant cells	1.61	Your immune cells are primarily metabolising carbohydrates and partially (30%) converting them	
		to lactate	This result:
Lactate/Pyruvate in activated cells	2.43	The cells are primarily using carbohydrates and converting around 80% of them to lactate	Under pressure, the fuel is largely not going into the

The normal range for immune cells usually ranges from 1.0 – 0.7. Examples are calculated below

Ratio	Basal metabolic rate
>2.0	The cell is primarily using carbohydrates and preferentially converting them to lactate.
>1.2-2.0	The cell is primarily using carbohydrates and partially converting them to lactate.
1-1.2	The cell is primarily using carbohydrates and transporting them into the mitochondria.
0.8 - 1.0	The cell is using carbohydrates, fatty acids and amino acids. The carbohydrates are primarily being transported into the mitochondria.
<0.8	The cell is primarily using fatty acids as fuel.

Under pressure, the fuel is largely not going into the mitochondria, it is being recycled into lactate. The buildup can be very painful (fibromyalgia-type symptoms).

	0	MITOCHON	DRIAL TEST		DEMY of NUTRITIONAL MEDICINE	
P	ATIENT INFORMATION			Please send results to:	myself	
Patient FIRST NAME*:		BAR	BARCODE		my practitioner	
Patient SURNAME*:		(Lab u	se only)	ORDERING DR/PR	ACTITIONER INFORMATION	
DATE OF BIRTH (D	DATE OF BIRTH (DD/MM/YYYY)*:			Dr. / Practitioner name:		
Sex assigned at birt	Sex assigned at birth* (please circle): male female			Clinic:	Clinic:	
Street Address:		Date of blood draw (D	Date of blood draw (DD/MM)*: Street Address:			
Postcode:	City:	Material/Quantity	🗆 CPDA	Postcode:	City:	
County:	Country:			County:	Country:	
Tel no:		AONM H	ELPLINE:	Tel no:		
Email*:		+44 (0) 33	331 210 305	Email:	Email:	

\leq	#TEST NUMBER	NAME OF TEST		MATERIAL	PRICE
	M1	ATP Profile:	Total ATP, Mitochondrial ATP, Glycolytic ATP, Reserve ATP	CPDA x1	£125
	M2	Mitochondrial Health Index (MHI):	Basal respiration rate, mitochondrial ATP turnover, proton leak, maximum respiration rate, reserve capacity, non-mitochondrial rate, calculation of the overall Mitochondrial Health Index	CPDA x1	£195
	M3 (M1+M2)	Combination of ATP Profile and MHI (M1 & M2)		CPDA x2	£285

SUPPLEMENTARY BIOMARKERS ON REQUEST (can normally only be done along with the ATP Profile and/or MHI)

M4	Ratio of mtDNA to nDNA	1 additional CPDA (max. 2)	£70
M5	PGC-1a	1 additional CPDA (max. 2)	£50
M6	Nrf-2	1 additional CPDA (max. 2)	£50
M7 (M4+M5+M6)	Combination of Ratio of mtDNA to nDNA, PGC-1 α , and Nrf-2 (M4, M5, M6)	1 additional CPDA (max. 2)	£135
M8	Lactate/pyruvate ratio (must be ordered at same time as MHI)	1 additional CPDA (max. 2)	£70
M9	Mitochondrial 4977 deletion mutant (mt4977del)	1 additional CPDA (max. 2)	£70
M10 (M3+M7+M8+M9)	Combination of all above (M3, M7, M8, M9)	CPDA x2	£485
M11	Intact vs. non-intact mitochondria (must be ordered at same time as MHI + M4 + M9)	CPDA x2	£25
M12	Mitochondrial Fuel Pathways (must be ordered at same time as MHI + M4 + M9)	CPDA x2	£195

Add £50 for courier delivery (to send from UK). Please Request shipping prices from elsewhere.

Tests plus courier. Total:

Tests of telomere length indicate a patient's biological (rather than chronological) age

Patient	
Geburtsdatum	28.11.1967
Probennahme	05.03.2024
Probeneingang	06.03.2024
Untersuchungsende	02.04.2024
Endbefund	02.04.2024
Validiert durch	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

MMD GmbH & Co. KG | Breiter Weg 10 a | 39104 Magdeburg

[Clinic]

RESULTS

Sample type: Whole blood	Test requested: Te	elomere length
--------------------------	--------------------	----------------

Relative telomere length (telomere to single copy	0.724
gene ratio, T/S)	
Absolute telomere length	7.23 kb
Chronological age	57
Age calculated by telomere length, i.e. biological age	33

Test results/interpretation: The calculated absolute telomere length (7.23 kilobases) corresponds to an age of between 30-35 years. The result means that the telomeres are longer than for 50% of people in the respective age group. This is a very encouraging result.

Source: https://doi.org/10.1016/j.cell.2020.12.028

Relevance of telomere dysfunction for features of cellular aging

Fingerprick tests also available

MM	CAPILI	I ITOCHONDRIAL TESTS U LARY BLOOD DRAW (FING	ISA 3 ACADEMY	IUTRITIONAL MEDICINE	
PATIENT	INFORMATION		Please send results to:	myself	
Patient FIRST NAME*:		BARCODE		my practitioner	
Patient SURNAME*:		(Lab use only)	ORDERING DR/PRACTITIONER INFORMATION		
DATE OF BIRTH (DD/MI	м/үүүү)*:		Dr. / Practitioner name:		
Sex* (please circle): male	e female	Date of Fingerprick (DD/MM)*:	Clinic:	inic:	
Street Address:			Street Address:		
ZIP:	City:	Please fill 2x rings for each test, up to a total of	ZIP:	City:	
County:	Country:	9 rings for ALL tests.	County:	Country:	
Tel no:		AONM HELPLINE:	Tel no:		
Email*:		+44 (0) 3331 210 305	Email:		
✓ #Test number	Name of test		Price (individ	ual tests) Price (ALL)	

\checkmark	#Test number	Name of test	Price (individual tests)	Price (ALL)
	MFP1	Oxidative stress measured using the mt4977 deletion mutant	£80	
	M6	Nrf-2 (Master antioxidant regulator)	£50	
	M15	8-OH-dG-DNA (a predominant ROS lesion)	£58	£352
	MFP8	Telomere length	£149	-
	MFP7	Fingerprick Test Kit (incl. delivery to USA by Royal Mail)	£15	

Courier (shipping) costs to be determined. Tests plus courier. Total: _____

Many videos about the Seahorse technology available, and over 8,000 studies* for which the Seahorse has been used

HOW THE SEAHORSE XF WORKS

Videos are at the bottom of this page: https://aonm.org/mitochondrial-testing/

SEAHORSE: ENERGY PATHWAYS

The tests require only one vial of blood in a CPDA[i] tube. The laboratory uses

* https://www.agilent.com/search/?N=4294836537

Thanks very much for your attention! <u>info@aonm.org</u>, 0333 121 0305 <u>gilian@aonm.org</u>, 0786 772 6387

Copyright MMD/AONM, All rights reserved